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• Dynamic  mode  decomposition  (DMD)  extracts  dynamically  coherent  patterns  from  large-scale  neuronal  recordings.
• Multiple,  distinct  sleep  spindle  networks  are  identified  by  DMD  as  measured  in  subdural  array  recordings.
• Sleep  spindle  networks  are  characterized  by different  cortical  distribution  patterns,  carrying  frequencies  and  durations.
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a  b  s  t  r  a  c  t

Background:  There  is a broad  need  in  neuroscience  to  understand  and  visualize  large-scale  recordings  of
neural  activity,  big  data  acquired  by tens  or hundreds  of electrodes  recording  dynamic  brain  activity  over
minutes  to  hours.  Such  datasets  are  characterized  by coherent  patterns  across  both  space  and  time,  yet
existing  computational  methods  are  typically  restricted  to analysis  either  in  space  or  in  time  separately.
New  method:  Here  we report  the  adaptation  of  dynamic  mode  decomposition  (DMD),  an  algorithm
originally  developed  for studying  fluid  physics,  to large-scale  neural  recordings.  DMD  is a  modal  decom-
position  algorithm  that  describes  high-dimensional  dynamic  data  using  coupled  spatial–temporal  modes.
The algorithm  is  robust  to  variations  in noise  and  subsampling  rate;  it scales  easily  to  very  large  numbers
of  simultaneously  acquired  measurements.
Results:  We  first validate  the DMD  approach  on  sub-dural  electrode  array  recordings  from  human  subjects
performing  a known  motor  task.  Next,  we  combine  DMD with  unsupervised  clustering,  developing  a  novel
method  to extract  spindle  networks  during  sleep.  We  uncovered  several  distinct  sleep  spindle  networks
identifiable  by  their  stereotypical  cortical  distribution  patterns,  frequency,  and  duration.
Comparison  with  existing  methods:  DMD  is closely  related  to principal  components  analysis  (PCA)  and
discrete  Fourier  transform  (DFT).  We  may  think  of DMD  as  a  rotation  of the  low-dimensional  PCA  space
such that  each  basis  vector  has  coherent  dynamics.
Conclusions:  The  resulting  analysis  combines  key  features  of  performing  PCA  in space  and  power  spectral
analysis  in  time,  making  it particularly  suitable  for  analyzing  large-scale  neural  recordings.

©  2015  Elsevier  B.V.  All  rights  reserved.

1. Introduction

Advances in technology and infrastructure are delivering the
capacity to record signals from brain cells in much greater numbers
and at even faster speeds. This deluge of data is central to answering
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many critical open questions in neuroscience and motivates the
continued development of computational approaches to analyze,
visualize, and understand large-scale recordings of neural activ-
ity. Fortunately, the activity of complex networks of neurons can
often be described by relatively few distinct patterns (for instance,
Broome et al. (2006), Byron et al. (2009), Churchland et al. (2012)
and Machens et al. (2010)). Identifying these spatial–temporal pat-
terns enables the reduction of complex measurements through
projection onto coherent structures, where it is tractable to build
dynamical models and apply machine learning tools for pattern
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analysis. Here we introduce dynamic mode decomposition (DMD)
as a novel approach to explore spatial–temporal patterns in large-
scale neural recordings. The method combines well-characterized
advantages from two of the most powerful data analytic tools in use
today: power spectral analysis in time and principal components
analysis (PCA) in space.

Measurements of neural activity from tens to hundreds of simul-
taneously recorded channels are traces in time that probe a network
with complex dynamics; one principled way to make sense of
such dynamic networks is with modal decomposition (Holmes
et al., 1998). Modal decomposition has been successfully applied in
almost every discipline of science and engineering because it makes
tractable the analysis of very high-dimensional data, reducing them
to combinations of relatively few distinct patterns, or modes.  A par-
ticularly popular modal decomposition tool is PCA, which derives
modes ordered by their ability to account for energy or variance
in the data (Jolliffe, 2005). PCA has already been widely applied in
the study of high-dimensional biological systems; however, it suf-
fers from a few well known drawbacks. In particular, PCA is a static
technique and does not model temporal dynamics of time-series
data explicitly, so it often performs poorly in reproducing dynamic
data, such as recordings of neural activity.

Neural dynamics are well known to be characterized by dynamic
oscillations at many frequency bands, which are implicated in
a variety of neural functions (Buzsáki and Draguhn, 2004; Fries,
2005; Raghavachari et al., 2001; Uhlhaas and Singer, 2010). Most
tools analyzing the frequency content of a signal are related to the
Fourier transform, which transforms time-varying signals into a
spectrum in the frequency domain. Importantly, the power spec-
trum can be computed efficiently using the fast Fourier transform
(FFT) algorithm (Welch, 1967), whose efficient implementation has
contributed to its ubiquitous use. One example of a modal decom-
position in time that goes beyond the Fourier transform is empirical
mode decomposition (EMD), which computes intrinsic oscillatory
modes from time-varying data (Huang et al., 1998). EMD  has been
used to analyze neural data, including cortical local field poten-
tial (Liang et al., 2005) and EEG (Sweeney-Reed and Nasuto, 2007).
There are several extension of frequency-domain analyses that also
support spatial structures (Rehman and Mandic, 2009; Rudrauf
et al., 2006)

A relatively new modal decomposition method is DMD  (Rowley
et al., 2009; Schmid and Sesterhenn, 2008; Schmid, 2010). DMD
was developed initially to study experiments and simulations in
the fluid mechanics community, where it was introduced to reduce
very high-dimensional dynamic data into relatively few coupled
spatial–temporal modes. Importantly, it has been shown that DMD
is related to Koopman spectral analysis, motivating its usefulness in
characterizing dynamics of nonlinear systems (Budišić et al., 2012;
Rowley et al., 2009). Beyond fluid mechanics, DMD  has recently
been applied to the fields of robotics (Berger et al., 2015) and disease
modeling (Proctor and Eckhoff, 2015). In the context of analyz-
ing neural recordings, DMD  modes can be thought of as coherent
structures in the neural activity.

1.1. Summary of computational developments

In Section 2, we describe a set of adaptations of the DMD  that
make it useful in the extraction of spatial–temporal patterns from
neural recordings. The base DMD  algorithm is given in Section 2.1,
where we also note its relationship to more established methods
and compare DMD  modes to PCA modes for an illustrative syn-
thetic dataset. Notably, in contrast to experiments and simulations
in fluid mechanics, neural recordings often have fewer measure-
ments (channels of electrodes) than time snapshots, so in Section
2.2 we describe the construction of an augmented data matrix. We
give intuition and recommendations for how to choose a set of

parameters such that the extracted DMD  modes are interpretable.
For instance, DMD  modes are useful as features in machine learn-
ing algorithms that undercover stereotyped patterns in the data, an
attribute we  leverage for a specific example described in Section
3.3. Examples of ECoG data decomposed by DMD  are given in Sec-
tion 2.3. Section 2.4 describes the DMD  spectrum, which has units
easily interpretable in comparison with traditional power spec-
tral analyses. Next in Section 2.5, we  characterize to what extent
spatial–temporal modes extracted by DMD  from human subdural
recordings are robust to noise and subsampling.

For very large datasets whose dimensionality strains typical
computing resources, DMD  may  be readily implemented using
standard linear algebra routines to take advantage of cluster com-
puting (for example, see Freeman et al. (2014)). We  suggest that
DMD  may be useful in understanding spatial–temporal coherent
patterns in data of escalating scale in neuroscience, including non-
invasive and invasive measurements such as functional MRI, MEG,
neurophysiological recordings with electrode arrays, and optical
imaging of neural activity.

1.2. Summary of experimental demonstrations

To demonstrate DMD’s applicability to large-scale neural recor-
dings, we analyzed sub-dural electrode array recordings from
human subjects in two  different contexts.

1.2.1. Sensorimotor maps
First, we  validated the DMD  approach to derive sensorimotor

maps based on a simple movement task. Our sensorimotor maps
show statistically significant changes in activation over the sensor-
imotor cortex in two  frequency ranges. These changes are distinct
for movements of the hand and tongue, and they are consistent
with results previously described by Miller et al. (2007).

1.2.2. Sleep spindle networks
Next, we leveraged DMD  in combination with unsupervised

clustering techniques to detect and characterize spindle networks
present during sleep; a method to automatically extract these
networks had not been described previously in the literature. Sleep
spindles are distinctive, transient oscillations around 14 Hz that are
characteristic of non-rapid eye movement (NREM) sleep, and their
presence is commonly used to classify sleep stages (De Gennaro
and Ferrara, 2003). Spindles have been the subject of scientific
investigation since the early 1930s and their mechanisms of gener-
ation are now quite well understood (Steriade et al., 1993). In brief,
sleep spindles oscillations are generated in the thalamus and their
electrographic signature arises from thalamacortical connections.
Even so, the role these transient oscillatory events play in brain
function remains unclear. A line of evidence suggests that sleep
spindles facilitate the consolidation of recently acquired memo-
ries (Clemens et al., 2005; Eschenko et al., 2006; Gais et al., 2002;
Johnson et al., 2012). This hypothesis is supported by recent work
demonstrating that sleep spindles can be locally, rather than glob-
ally, synchronous events (Johnson et al., 2012; Nir et al., 2011).

Historically, sleep spindles have been scored by experts on scalp
EEG data. Spindles vary in amplitude, duration, central frequency,
and often concur with other regularly observed sleep features.
Automated detection algorithms typically rely on band-pass filter-
ing the signal followed by an amplitude threshold on some moving
average window (for instance, Ray et al. (2010) and Schimicek et al.
(1994)). Recently, a number of these algorithms were evaluated
against experts and crowd-sourced spindle detectors (Warby et al.,
2014). It is important to point out that all of these approaches only
address spindle detection. The reliable identification and charac-
terization of spatial networks of electrodes showing synchronous
spindle activity has remained a challenge. The structure of sleep
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spindle networks may  reveal insights about thalamacortical con-
nections and other neural circuitry, which motivates development
of more sophisticated methods.

We show that sleep spindles tended to occur coincidentally in
different groups of electrodes at different times. These patterns may
reflect some underlying anatomical or functional connectivity in
the brain, and studying relatively local spindle networks may  be a
novel way to understand the organization of the brain. A companion
manuscript describes our detailed analysis of the significance of
these patterns (Johnson et al., 2015). Our spindle network detection
algorithm enables the exploration of sleep spindle networks in a
large number of experimental subjects, which will shed light on
thalamacortical connections and local cortical networks.

2. Computing the dynamic mode decomposition (DMD)

In Section 2.1, we briefly summarize the DMD  algorithm
(Rowley et al., 2009; Schmid, 2010; Tu et al., 2013). We expand
on connections between DMD  and related methods, including its
relationship with the Koopman operator, in Section 2.1.3. To build
some intuition, DMD  is compared to principal components analysis
(PCA) and independent components analysis (ICA) on a synthetic
noisy timeseries dataset. We  then detail a few adaptations use-
ful for its application to large-scale recordings of neural activity,
including instructions for how to choose parameters for use in the
computations. These adaptations are DMD  with an augmented data
matrix (Section 2.2) and the DMD  “power” spectrum (Section 2.4).
Section 2.5 explores the robustness and accuracy of DMD, describ-
ing to what extent the decomposition is reliable in the presence of
noise and with data subsampling.

2.1. Exact DMD

Consider measurements taken from n observable locations at
times k!t, where we arrange measurements at snapshot k to make
a column vector xk. For instance, in the case of electrophysiological
recordings, these measurements may  be voltages from n channels
of an electrode array sampled every !t.

Gathering measurements from m snapshots in time, we may
construct two n × (m − 1) raw data matrices:

X =

⎡

⎣
| | |

x1 x2 · · · xm−1

| | |

⎤

⎦ ,

X′ =

⎡

⎣
| | |

x2 x3 · · · xm

| | |

⎤

⎦ .

(1)

Note that X and X′ contain largely overlapping data, differing in that
columns of X′ are shifted one !t  from those in X.

Let us suppose that there is an unknown linear operator A such
that

X′ = AX. (2)

The dynamic mode decomposition of the data matrix pair X and X′ is
given by the eigendecomposition of A. We  may  think of A as describ-
ing a high-dimensional linear regression of the nonlinear dynamics
that relate X to X′.

To obtain an approximation of A, one possible approach is to use
the singular value decomposition (SVD) of the data matrix X = U!V*

to compute its pseudoinverse:

A ≈ X′X† ! X′V!−1U∗. (3)

However, if n is large, computing the eigendecomposition of the
n × n matrix A may  be prohibitively expensive, so that this approach
is not readily scalable.

In addition, we assume that there exists some low-dimensional
spatial structure in X. Under this assumption, the following pro-
cedure allows the DMD  modes and eigenvalues to be calculated
without direct computation of A.

DMD  algorithm (Tu et al., 2013)

1. Compute the SVD of our first data matrix, X = U!V*. We
may  now make the substitution into Eq. (2) and write
X′ = AU!V*.

2. Define Ã ! U ∗ AU = U ∗ X′V!−1.
3.  Compute the eigendecomposition of Ã,

ÃW = W",
where W is the matrix of eigenvectors, and " is the
diagonal matrix of eigenvalues "i . Each eigenvalue "i is a
DMD  eigenvalue.

4. Compute the DMD  modes,
# ! X′V!−1W. (4)
Each column of # is a DMD  mode #i corresponding to
eigenvalue "i .

Finally, we  may  write an approximation of the observed data as
a simple dynamic model X̂(t),

X̂(t) = # exp($t)z, (5)

where $ = log(")/!t, t is time, and z is set of weights to match the
first time point measured such that x1 = #z (this equation can be
solved by using the pseudoinverse of #).

The key feature of the above algorithm is that it decomposes
data, arranged as in Eq. (1), into a set of coupled spatial–temporal
modes. Note that # and " are both complex valued, and that X̂ has,
in general, non-zero imaginary components; if the raw data X is
strictly real valued, then we  may  consider only the real component
of X̂.

2.1.1. Data reconstruction from DMD modes
To see that the dynamic model reconstruction in Eq. (5) follows

from the DMD  algorithm above, we make use of the theorem that
each pair of DMD  modes and eigenvalues #i and "i are eigenvec-
tor/eigenvalues of A (Theorem 1 in Tu et al. (2013)), satisfying

A#i = "i#i.

We may  expand each snapshot of data xk as a linear combination
of the DMD  modes #i,

xk =
∑

i

cik#i,

for some constants cik. Since we have xk+1 = Axk,

xk+1 =
∑

i

cikA#i =
∑

i

cik"i#i.

Further, xk = Ak−1x1, so we  may write

xk =
∑

i

Ak−1#izi =
∑

i

"k−1
i #izi = #"k−1z,

where z is a set of constants satisfying the expansion of the first
data snapshot x1 such that x1 = #z.

Let us now make a change of units from data snapshots
k (observed at every !t)  to units of time t, and also define
$ = log(")/!t, so that we have

x(t) = # exp($t)z.

This last expression is Eq. (5).
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Fig. 1. A comparison of DMD  with common modal decomposition algorithms on a synthetic timeseries dataset. (a) The dataset is a movie with 6400 pixels in each frame, and
this  noisy, high-dimensional time series dataset has two  underlying, overlapping patterns, a Gaussian oval and a square. Each mode also has a distinct temporal evolution
that  includes both growth/decay and oscillation. The magnitude of the noise is 0.75× the magnitude of the signals. (b) PCA derives modes that mix  the underlying modes. (c)
ICA  modes more closely resemble the generative modes, but the two  underlying modes are still mixed. (d) DMD extracts the spatial–temporal coherent modes in the movie.
These  DMD  modes closely resemble the underlying spatial modes and provide an estimate of the temporal evolution of these patterns.

2.1.2. DMD, PCA and ICA on a synthetic dataset
To build some intuition of DMD  modes, Fig. 1 compares results of

modal decomposition by PCA, independence components analysis
(ICA, Hyvärinen and Oja (2000)), and DMD  on a synthetic timeseries
dataset. The timeseries dataset is a movie 10 s in duration sampled
at 50 frames per second, where each frame is a 80 × 80 = 6400 pixel
image (so n = 6400 and m = 500). The dataset is constructed to be
the sum of two generative modes, each with a spatial pattern that
evolves according to some coherent temporal dynamics (Fig. 1a).
Mode 1 is a Gaussian oval in space that oscillates and decays in time;
Mode 2 is a square that oscillates at a lower frequency than the
oval does. The two modes are spatially overlapping. Each mode’s
magnitude is of range [−1, 1], and independent noise drawn from
a Gaussian distribution N(0,  0.75) was added at each pixel.

Fig. 1b–d shows the first two modes computed by each method.
As shown in Fig. 1b, PCA derives modes that mix  the two genera-
tive modes in Fig. 1a. These PCA modes are vectors in Rn, ordered by
their ability to explain the greatest fraction of variance in the data;
PCA assumes the data is distributed as a multi-dimensional Gauss-
ian. Fig. 1c shows that ICA can potentially do better than PCA, but the
two generative modes are still mixed. ICA mode 1 (top of Fig. 1c)
contains the Gaussian oval with a shadow of the square. Unlike
PCA, ICA modes are computed assuming the underlying signals are
non-Gaussian and statistically independent.

In contrast, DMD is an explicitly temporal decomposition
and takes the sequences of snapshots into account, deriving
spatial–temporal coherent patterns in the movie. DMD  modes are
closely related to PCA modes and also assumes variance in the data
is Gaussian. The two largest DMD  modes not only closely resem-
ble the two generative modes, but they also contain an estimate
of the temporal dynamics of the two modes, including an estimate
of their frequencies of oscillation and time constant of exponential
growth/decay. These temporal parameters are computed from the
DMD eigenvalues by Eq. (6) as explained in Section 2.4. Further,
the computational complexity of DMD  is within the same order of
magnitude as that of PCA.

2.1.3. Connections to related methods
DMD  has deep mathematical connections to Koopman spectral

analysis. The Koopman operator is an infinite-dimensional, linear

operator that represents finite-dimensional, nonlinear dynamics.
The eigenvalues and modes of the Koopman operator capture
the evolution of data measuring the nonlinear dynamical system
(Budišić et al., 2012; Mezić, 2005). DMD  is an approximation of
Koopman spectral analysis (Rowley et al., 2009), so that DMD
modes are able to describe even nonlinear systems.

As an algorithm, it is convenient to think of spatial–temporal
decomposition by DMD  as a hybrid of static mode extraction by
principal components analysis (PCA) in the spatial domain and dis-
crete Fourier transform (DFT) in the time domain. In fact, DMD
modes are a rotation of PCA space such that each basis vector has
coherent dynamics. The DMD  algorithm in Section 2.1 starts with
a SVD of the data matrix X = U!V* as the first step, where U are
identical to PCA modes. DMD  modes are eigenvectors of Ã = U∗AU,
so that we can think of Ã as the correlation between PCA modes U
and PCA modes in one time step AU. Liked the DFT, DMD  extracts
frequencies of oscillations observed in the measurements. In addi-
tion, DMD  goes beyond DFT to also estimate rates of growth/decay,
where the DFT eigenvalues always have magnitudes of exactly one.

The general formulation of the high-dimensional timeseries
problem is related to several methods in the statistics literature,
including vector autoregression (VAR, Charemza and Deadman
(1992)). DMD  differs from VAR in that the A matrix in Eq. (2) is
never explicitly estimated, but rather we seek its eigendecomposi-
tion by computing Ã  in step 2 of the DMD  algorithm. The resultant
modes are interpreted as a low-rank dynamical system expressed
in Eq. (5). Further, these modes represent separable spatiotemporal
features of the data. Interestingly, this approach of computing Ã is
mathematically related to Principal Components Regression (PCR,
Jolliffe (2005)).

2.1.4. Additional properties and practical limitations
A few general properties of DMD  are interesting to note. The

data X may  be real or complex valued; in the case of recordings
from electrode arrays, we  will proceed assuming X are real val-
ued measurements of voltage. Further, the decomposition is unique
(Chen et al., 2012), and it is also possible to compute the DMD  of
non-uniformly sampled data (Tu et al., 2013).

The relationship of DMD  to PCA and DFT points to a few lim-
itations of the technique that guide its application. DMD  spatial
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modes are based on PCA modes; therefore, relatively local spatial
correlations (affecting only a very small number of measurement
locations) that do not contain a lot of energy may  be less likely
to emerge as coherent modes in both PCA and DMD. Since the
formulation DMD  contain no explicit spatial relationship between
neighboring measurements in X, it is difficult to capture traveling
waves with a few coherent DMD  modes without transformation to
a different spatial basis.

In the temporal domain, DMD  converts timeseries information
into a sum of complex sinusoids. It follows that nonlinear tempo-
ral dynamics that are not well approximated by eωt, where ω is a
complex number and t is time, will not be well approximated by
DMD. The possible evolution of eωt includes functions of exponen-
tial growth or decay with some sinusoidal oscillation (for instance,
see the temporal evolution of Modes 1 and 2 in Fig. 1a), so DMD
is ill-suited to capture transient dynamics (even so, see a multi-
resolution extension of DMD  in Kutz et al. (2015)). In practice, DMD
is used as a windowed technique, and we use caution in choosing
the sizes of the windows such that the eωt approximation is useful.
Interestingly, while the temporal window size constrains the DFT
in the lowest frequency it is able to capture, DMD  is not subject
to the same constraint on the lower bound. Still, the sampling rate
of the data does constrain the highest frequency DMD  is able to
capture, as dictated by Nyquist sampling.

2.2. Implementing DMD  with an augmented data matrix

DMD  was originally used in the study of large fluid flow fields,
where typically n ≫ m. In contrast, in neuroscience we  are often
interested in electrode arrays that have tens of channels sampled
at hundreds of samples per second, so for a data matrix X over a 1-s
window of data, n < m. The SVD of X produces v non-zero singular
values, where v is the smaller of n and m − 1. This property restricts
the maximum number of DMD  modes and eigenvalues to n, which
is often too few to fully capture the dynamics over m snapshots in
time.

The solution to this rank mismatch is to construct augmented
versions of the data matrices, appending to the snapshot mea-
surements with h − 1 time-shifted versions of themselves, thus
augmenting the number of measurements to be hn.

Specifically, we construct a new augmented data matrix Xaug,

Xaug =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

| | |
x1 x2 · · · xm−h

| | |
| | |

x2 x3 · · · xm−h+1

| | |
...

| | |
xh xh+1 · · · xm−1

| | |

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

;

and similarly for X′
aug. It is important to note that in shift-stacking

the snapshots, we preserve the X′ = AX relationship in Eq. (2) for
all rows (measurements) of the new augmented data matrix. The
data matrices augmented by shift-stacking is inspired by the Hankel
matrix as constructed in the Eigenvalue Realization Algorithm (ERA,
Juang and Pappa (1985)). A Hankel matrix is constant across its
skew diagonal; similarly, Xaug and X′

aug have shifted repeats of xk
in blocks across its skew diagonal direction.

DMD  is then applied as described in Section 2.1 using Xaug and
X′

aug instead of X and X′. Thus computed, the spatial DMD  modes

# are now hn × m matrices; even so, because the augmented data
matrices are h time-shifted stacks of the same raw data, the com-
puted DMD  modes are also stacks of h repeats.

2.3. DMD modes of ECoG data

Fig. 2 illustrates the separation of spatial modes # from their
temporal dynamics " for an example window of ECoG array recor-
dings. In this example, the 44-channel dataset with 100 time points
(0.5 s sampled at 200 Hz) was stacked h = 5 times to achieve an accu-
rate decomposition of the data. Comparing Fig. 2a and b, we see that
the reconstruction X̂ as computed by Eq. (5) captures most spatial
and dynamic features of the raw data; Fig. 2c shows the error of the
reconstruction.

Fig. 2d represents DMD  reconstruction of the data as the mul-
tiplication of complex-valued matrices, following Eq. (5). Here
complex-valued # ∈ Rhn×m and " ∈ Rm×m are visualized in their
real-valued and imaginary parts using separate colormaps. Each
column of # corresponds to one element on the diagonal of ". The
magnitude (absolute value) and phase of each element of #i rep-
resents spatially coherent activation and the relative phase of this
activation across the n electrodes, respectively. The magnitude and
phase of each eigenvalue "i contain information about time dynam-
ics; their interpretation and use are discussed in Section 2.4. Since
a stacking depth of h = 5 is used in this example, the dashed hori-
zontal lines break # into 5 stacks, emphasizing that the modes are
likewise 5 stacks of essentially identical repeats.

To decide the appropriate parameters for number of stacks h,
Fig. 3a shows an examination of the DMD  approximation error as
a function of h; this plot uses the same example window of data as
in Fig. 2a. The approximation error E was defined as

E = |X − X̂|F
|X|F

,

where |M|F =
√∑

j

∑
i|mij|2 is the Frobenius norm. The error

decreased as the number of modes included in the approximation
r increased. This decrease reached a plateau for all h ≥ 5, so that
further stacking did not significantly increase the accuracy of the
DMD approximation.

Fig. 3b shows mean and variation of DMD  approximation error
over 100 random windows of data for which n = 44 and m = 100.
Fig. 3c and d quantifies the mean and standard deviation of approxi-
mation error for different sizes of data matrices, using 100 random
windows of data each. As the degree of stacking h increases, the
error decreases.

2.3.1. Recommended parameter values
In general, to determine the stacking depth parameter h, we rec-

ommend choosing the smallest integer h such that hn > 2m, where
n is the number of channels in the recording and m is the num-
ber of snapshots in the windowed data matrix. This value of h is
shown as dashed lines in Fig. 3b–d. We  observed that this degree
of stacking and truncation provided enough DMD  modes to cap-
ture the observed dynamics, as quantified by the reconstruction
error (Fig. 3) reaching an asymptotic (or nearly asymptotic) level.
The resultant augmented DMD  modes #i are now vectors of hn ele-
ments; Fig. 2d shows that the computed DMD  modes are also stacks
of h repeats. Generally, the first n elements of each mode are used
in subsequent analyses.

2.4. The DMD power spectrum

Each spatial DMD  mode #i has a corresponding eigenvalue
"i that describes its temporal dynamics. Specifically, the rate of
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Fig. 2. Coupled spatial–temporal decomposition of ECoG data computed by DMD. The data used in this example, shown in (a) as a heat map where the colors represent
(normalized) voltage, has n = 44 channels and spans 0.5 s of recordings acquired at 200 Hz (so m = 100 snapshots). To compute the DMD  of X, we used h = 5 stacks. Comparing
(a)  to the DMD  approximation in (b) shows the reconstruction error (c) is relatively small. Note that (b) visualizes only the real part of X̂, since our original data is strictly
real  valued. The spatial modes # ∈ Rhn×m and temporal components " ∈ Rm×m are visualized in (d). Since these modes are all complex valued, their magnitude and phase
information are visualized separately. The dashed lines break # into h = 5 stacks, emphasizing that modes are 5 stacks of the same repeats.

Fig. 3. The accuracy of the DMD  approximation improves as the degree of stacking in the augmented data matrix h. (a) The error of the approximation E as defined in Section
2.3 is plotted as a function of h for the example raw data shown in Fig. 2a. The error of DMD approximation is plotted for raw data of several example dimensions X ∈ Rn×m

in (b–d); the gray boxes illustrate dimensions of X and have aspect ratios n × m. In each figure, the mean and standard deviation of E is shown over 100 random time points
of  ECoG recordings. The dashed lines indicate the recommended value of h as described in Section 2.3.1.

Fig. 4. The DMD spectrum recovers dynamics of the data, revealing the growth/decay and oscillations of each mode. This figure shows the spectrum computed for the same
data  as in Fig. 2. (a) and (b) Eigenvalues " and log " are visualized as complex values, where each open circle is an eigenvalue and its diameter is proportional to the amplitude
of  the corresponding spatial mode (Eq. (7)). The vertical axis of (b) shows frequency f as defined by Eq. (6), which has units of cycles/sec (Hz). Another way to show the same
spectrum is in (c), which plots mode amplitude as a function of f. This view is the most easily comparable to (d), the amplitude of oscillations at a range of frequencies as
computed by the Fourier transform. Each gray line in (d) shows the FFT computed separately for each channel of the recording and the solid black line is their mean.
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growth/decay and frequency of oscillation are reflected in the mag-
nitude and phase components of "i, respectively (Fig. 2d). The
distribution of DMD eigenvalues " may  be visualized relative to
the unit circle on the complex plane, as in Fig. 4a.

As we can see from Eq. (5), the dynamical equation derived
from DMD modes and eigenvalues has a exp(ωit) term, where
ωi = log("i)/!t and t is time. The sign of the real component of ω
determines if the dynamics of the corresponding mode are grow-
ing, decaying, or stable. The imaginary component of ω determines
the frequency of oscillations. To make the phase of each eigenvalue
more interpretable in the context of brain oscillations, we can make
a change of units to cycles per second (Hz). Specifically,

fi =
∣∣∣ imag(ωi)

2%

∣∣∣ (6)

gives the frequency of oscillation of mode #i in units of cycles per
second (Fig. 4b and c). In the case of ECoG data, since the raw
data is strictly real valued, the decomposition produces complex
conjugate pairs of eigenvalues and modes.

The definition of DMD  as the eigendecomposition of A in Eq.
(2) allows for arbitrary scaling of the DMD  modes. The algorithm
outlined in Section 2.1 produces modes with unit norm. To use
the magnitude of these modes in a way similar to the power spec-
trum for selecting modes with high energy, we must choose an
appropriate scaling.

One useful scaling is to multiply each mode by the correspond-
ing singular value from the SVD. We  modified step 3 of the DMD
algorithm to scale the modes by energy as follows.

3†. Compute the eigendecomposition of Â = !−1/2Ã!1/2,
ÂŴ = Ŵ",
where Ŵ is the matrix of eigenvectors and " is the diagonal
matrix of eigenvalues. The eigenvalues of Â are identical to the
eigenvalues of Ã, and
W = !1/2Ŵ
are eigenvectors of Ã that we will use in step 4. These
eigenvectors are scaled by !1/2, so they do not have unit norm.

To visualize the DMD  spectrum, we plot the “power” of each
mode #i against its frequency of oscillation fi. The mode amplitude
of #i is defined as the square of its vector magnitude:

Pi =
∣∣#i

∣∣2

2
. (7)

In Fig. 4a and b, the sizes of the dots indicate this mode
amplitude. Fig. 4c illustrates the intuition that the DMD  spectrum
qualitatively resembles the power spectrum computed by the FFT
for a 0.5 s window of ECoG data, shown for comparison in Fig. 4d.
Despite this resemblance, it is important to remember that the
power spectrum is computed independently for every channel of
the recording, whereas every point in the DMD  spectrum corre-
sponds to a specific spatial mode across all channels.

2.5. Robustness and accuracy of DMD

The DMD  reliably extracts coupled spatial–temporal modes
under subsampling of the raw data. As an illustrative example,
Fig. 5 shows the effects of subsampling on one mode extracted
from one window of data. Fig. 5a shows the DMD  spectrum for a
1-s window of data (n = 59 channels) sampled at 1 kHz (m = 1000),
and Fig. 5b–e shows the DMD  spectra for the same window of data
subsampled by factors of 2, 3, 4 and 5 (so that m = 500, 333, 250 and
200). To be explicit, subsampling by a factor of 2 consists of keep-
ing every other time snapshot in the data matrix X. The degree of
stacking was determined as described in Section 2.3.1. The eigen-
values are not identical, but the spectra qualitatively resemble each
other.

Next, we  examined the spatial DMD  mode corresponding to
one particular eigenvalue, indicated by the red cross in every spec-
trum. This mode is chosen as the mode with the largest magnitude
between 25 and 26 Hz. The magnitude and phase of this partic-
ular mode across all subsamples is shown in Fig. 5f–j and k–o,
respectively. Each mode is plotted in space as a 8 × 8 spatial grid of
electrodes, arranged as they were placed on the brain surface dur-
ing the recording. Although these modes are shown as an abstract
grid here for clarity, the raw data is the same as used in the sensor-
imotor map analysis in Section 4.1, and their positions are rendered
relative to subject A’s brain structure as shown in Fig. 8. Note that
there had been 64 electrodes in the grid, but only n = 59 channels
with good recordings are included in this analysis.

Across all subsamples, mode magnitudes |#| and mode phases
∠# remain very similar to each other and are highly correlated,
as quantified in Fig. 5p and q. All correlation coefficients are large
and positive (>0.75) with highly significant p-values (p < 10−6). The
correlation coefficients for ∠# are computed considering that the
values are circular.

2.5.1. Robustness of spatial modes to subsampling the data
Across a random ensemble of windowed ECoG data, correla-

tions of mode amplitude and angle remain high across subsamples.
Fig. 6a and b shows the correlation coefficients of |#| and ∠# as a
function of sampling rate for four different example mode frequen-
cies, averaged across 100 random windows of data. Each window
comprised of 1 s of data for n = 59 channels and, before subsam-
pling, was sampled at 1000 Hz. When subsampled by a factor of 1,
2, 3, 4 and 5, the resultant data matrix X had m = 1000, 500, 333, 250
and 200 snapshots, respectively. For each window of data, the DMD
spectrum is computed, similar to what is shown in Fig. 5a–e, and
the largest amplitude mode whose frequency was  within 1 Hz of 5,
15, 25 and 35 Hz was  chosen and compared to the corresponding
mode derived with no subsampling. In other words, for each win-
dow of data, we computed the correlation coefficients in the top
rows of Fig. 5p and q. On average, these modes computed under
subsampling remain highly correlated to modes computed with no
subsampling.

Since the decomposition reliably extracts spatially coherent
patterns, it follows that if we are interested in spatial modes of
frequency f, then the minimum sampling frequency of the dataset
obeys Nyquist sampling and should be larger than 2f. In practice,
a minimum sampling frequency of closer to 3f may  be preferable,
as we observe some decrease in correlation coefficients for larger
mode frequencies.

2.5.2. Consistency of spatial modes to additive noise
We perform a similar analysis of spatial mode magnitude and

phase correlation as a function of additive noise. We  restrict our
description here to the effects of additive noise to (already noisy)
ECoG data. Fig. 6c and d shows correlation coefficients of |#| and
∠# for increasing noise magnitude for four different example mode
frequencies, averaged across 100 random windows of data. Similar
to the analysis described in Section 2.5.1, each window of data com-
prised of half a second of data across n = 59 channels and sampled
at 100 Hz (so m = 500), the correlation coefficients were computed
to the corresponding mode from the same window of data with no
additive noise. The additive noise was drawn independently from
Gaussian distributions of zero mean and standard deviation as spec-
ified on the horizontal axis. Since the raw data before adding noise
has been normalized so that each channel has unit standard devi-
ation, Fig. 6c and d shows that the correlation coefficients remain
high for noise standard deviations up to at least 1/10 of the mean
signal magnitude.
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Fig. 5. Modes derived by DMD  are robust to subsampling the raw data. DMD was  computed for a window of ECoG data (n = 59 channels) sampled at 1 kHz, and the same
window  of data subsampled by factors of 2, 3, 4 and 5. (a)–(e) show DMD spectra plotted the same way as in Fig. 4b. Next, we examine one particular spatial mode from
each  of spectra, marked by a red cross. The magnitude |#| (f)–(j) and phase ∠# (k)–(o) of this mode is consistent across subsamples. Modes are visualized as 8 × 8 grids of
electrodes, and colors are coded as in the bottom right. Their similarity is quantified by pair-wise cross-correlations (p)–(q). (For interpretation of the references to color in
this  figure legend, the reader is referred to the web version of the article.)

3. Materials and methods

3.1. Collection and preprocessing of ECoG recordings

3.1.1. Subjects
All subjects were patients undergoing long-term electrocor-

ticography (ECoG) monitoring in preparation for surgical treatment
of intractable epilepsy. Data were collected from two  subjects
(female subjects A and B, ages 29 and 11 respectively) with sub-
dural platinum electrode arrays (Ad-Tech, Racine, WI). Electrodes
had a 2.3 mm exposed surface diameter and were spaced at 1 cm.

Subjects were patients at the University of Washington and gave
informed consent according to the protocol approved by the Insti-
tutional Review Board of that institution.

3.1.2. Recording and data preprocessing
The ECoG signals were recorded by the XLTEK (Natus Medical

Incorporated, San Carlos, California) clinical monitoring system at
a sampling rate of 500 or 2000 Hz. The standard system parameters
impose a high-pass filter at about 0.1 Hz. For the motor mapping,
recordings were high pass filtered above 6 Hz and down sam-
pled to 1000 samples/s. Further, each channel of recording was

Fig. 6. Modes derived by DMD are robust to subsampling the raw data and additive noise. (a) and (b)The mean correlation coefficients of mode magnitude |#| and phase
∠#  are computed over 100 random windows of data under subsampling. This comparison was  repeated for modes at 4 different frequencies f = 5, 15, 25 and 35 Hz. (c)–(e) A
similar mode correlation analysis was  repeated for additive Gaussian distributed noise.
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Fig. 7. Schematic of methods for spindle network detection and characterization. (a) ECoG data shown as voltage traces in time where different electrodes are stacked
vertically. (b) A DMD  spectrum is computed for each window of data, and modes in the spindle band (gray bar) with magnitudes larger than expected from a 1/f˛ fit of the
ongoing spectrum (blue lines) are detected (modes highlighted in red). (c) These candidate spindle modes are gathered over the entire recording into a spindle library L, and
elements in L are pruned if they not detected in consecutive windows for ≥500 ms  (d). (e) The remaining elements in L are clustered using a mixture of Gaussians models,
and  the centroids of each cluster are consider the stereotypes of spindle networks. Each instance in L is assigned to a spindle network cluster and consolidated into spindle
events.  (f) Events shorter than 500 ms  in duration are pruned and ignored from further analysis. (For interpretation of the references to color in this figure legend, the reader
is  referred to the web version of the article.)

normalized to have unit standard deviation. The total length of
the motor screen recording was approximately 4 min. For spindle
network extraction, recordings were bandpass filtered between 6
and 80 Hz, and down sampled at 200 samples/s; the total length of
recording of a sleep epoch from each subject was  approximately
20–30 min. Subject A had an electrode array with 64 channels;
Subject B had an electrode array with 48 channels.

3.2. Sensorimotor mapping

3.2.1. Motor screen task
ECoG data was collected while a simple motor screen task was

performed as described previously in Miller et al. (2007). Briefly,
the patient was instructed to not move (baseline), to move their
tongue, or to move the hand contralateral to the implanted elec-
trode array. Twenty (20) trials of each movement were repeated in
pseudo-random order with instructions to not move in between;
each instruction lasted three (3) seconds. The data used in this
analysis was from Subject A.

3.2.2. Sensorimotor mapping by DMD
To map  cortical areas whose activity is modified during move-

ment of the tongue and hands in a frequency-dependent way,
we divided the ECoG array recording into baseline (no instructed
movement), tongue movement, and hand movement trials. The
middle 2 s of each trial (between 500 and 2500 ms  from the begin-
ning of the instruction) where used in the sensorimotor mapping
analysis. In each trial, the 2 s recording window over all channels
was decomposed by DMD; the time series data were augmented
by stacking as described in Section 2.2. The DMD  spectrum was
examined to extract spatial modes in two frequency ranges, a low
frequency band (8–32 Hz) and a high frequency band (75–100 Hz).
All the absolute value of DMD  modes in each frequency range was
averaged to extract the mean mode magnitude. Next, for both the

low and high frequency bands, we compared the mean mode across
all trials for hand and tongue movements by subtraction of the
mean baseline modes.

Fig. 8 shows the z-scores of relative changes in mean mode mag-
nitude as assessed by bootstrapping. To estimate the variation in
mode magnitude in frequency bands of interest unrelated to this
task, the trial labels (no movement, tongue movement, or hand
movement) were shuffled and the same movement minus baseline
analysis was  repeated for each set of shuffled data. This random
shuffle was repeated 1000 times, and the standard deviation of
movement minus baseline mode magnitude at each electrode was
computed. Next, the z-score of change from baseline was com-
puted at each electrode based on these bootstrapped estimates of
standard deviation.

3.3. Spindle network extraction

To detect the presence of spindle networks, we  first sepa-
rated the ECoG recordings of sleep into 300 ms  windows in time
and decomposed the windowed data using DMD. Section 3.3.2
described how we used the resultant DMD  spectrum to identify
spectra characteristic of spindle-associated activity. We  used over-
lapping windows, sliding 50 ms  between consecutive windows.
Next, Section 3.3.3 described how spatial DMD  mode magnitudes
corresponding to excess power in the spindle band were collected,
and stereotypes of spindle networks were discovered by clustering
using a Gaussian mixtures model.

3.3.1. Sleep identification
Non-REM sleep epochs were identified by inspection using the

increased power in the delta band (1–6 Hz) and verified by the
presence of K-complexes and spindles. For every sleep epoch, all
electrode traces were normalized by z-scoring with respect to the
amplitude in the 5–50 Hz range. This frequency range was chosen
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Fig. 8. Sensorimotor map  as derived from DMD  modes. Relative to baseline, during movement, sites over sensorimotor cortex (the most posterior columns of the electrode
array)  showed decreased DMD  mode magnitudes in the low frequency range (8–32 Hz, a and b), and increased magnitudes in the high frequency range (76–100 Hz,  c and
d).  Z-scores were computed by bootstrapping. Consistent with previous literature, the sites of increased high frequency power were separable for tongue (c) and hand (d)
movements. Data from Subject A was used in this analysis.

to eliminate the variable amplitude effects of K-complexes, which
have a maximum amplitude in medial-frontal regions (Wennberg,
2010).

3.3.2. Spindle detection criteria
The DMD  power spectrum allows us to formulate a principled

criterion to identify the presence of increased power in the spin-
dle band (14 ± 5 Hz). It has been well described that the power
spectral density of recordings from the brain follows a 1/f˛ dis-
tribution, where  ̨ is a positive scalar (Bedard et al., 2006; Miller
et al., 2009). We  used this observation to fit the  ̨ of the DMD  spec-
trum, excluding power at frequencies below 5 Hz and above 57 Hz.
This 1/f˛ distribution was fit over the cumulative DMD  spectra of
each epoch of a subject’s recording (usually about 30 min) using
robust regression (Holland and Welsch, 1977), which rejected out-
liers due to sporadic electrical noise in the recordings. Windows
including presumptive epileptiform activity were rejected based
on a generalized elevation in power over all frequencies.

For each window of data, a DMD  mode # was considered part
of a spindle network if and only if its power significantly exceeded
2.5× standard deviations of the 1/f˛ fit (upper blue dashed lines in
Fig. 7b); in the spectra shown in Fig. 7b, these modes are shown
highlighted red. The magnitude of spatial DMD  modes passing this
detection criteria are gathered to form a library of putative spindle
networks L (Fig. 7c). Further, to reduce the incidence of spurious
identification of spindle networks, significant power in the spindle
band must be detected in consecutive, overlapping windows for
≥500 ms  (Fig. 7d).

3.3.3. Clustering spindle networks
Elements of the library of spindle networks L were clustered into

distinct types of spindle networks. Specifically, we constructed a
library of DMD modes L,

L =

⎡

⎣
| | |

#1 #2 · · · #N

| | |

⎤

⎦ .

For purposes of clustering, we considered only the absolute value of
DMD modes and each mode was normalized to unit length. Clusters
were determined in r-dimensional principal components space,

using the projections of each column of |L| onto the first r principal
components of |L|:

|L| = UL!LV∗
L,

a = UT
r L,

where UT
r is the transpose of the first r columns of UL.

As illustrated schematically in Fig. 7e, we used a Gaussian mix-
tures model to group columns of a as points in Rr into k clusters
(Murphy, 2012). Since this approach is unsupervised, we selected
the appropriate value of k in the model using the Bayes Information
Criterion (BIC), a statistical metric to guide comparison of mod-
els with different numbers of parameters that punishes overfitting.
Briefly, a model with a smaller BIC is more parsimonious with the
available data than a model with a larger BIC. We  evaluated descrip-
tions of |L| using a Gaussian mixtures model in r dimensions using
k and systematically varied r from 2 to 10 and varied k from 2 to 10.
The number of stereotyped spindle networks k was chosen to min-
imize BIC of this family of Gaussian mixtures model. For the two
subjects we tested, the median k for which BIC was minimal was
4 clusters for both subjects. We  chose to fit the Gaussian mixtures
model with r = 5 reduced dimensions, because increasing r beyond
5 did not significantly change the assignment of clusters.

After clustering, each element of L is assigned to a single cluster
(a stereotype of spindle network). These assignments are consoli-
dated into spindle events, defined as a block of continuous windows
of data assigned to the same cluster. A final step (Fig. 7f) prunes
events shorter than 500 ms  in duration.

3.4. Software availability

In the interest of reproducibility, a software implementation of
DMD as described in this work is available as a set of Matlab scripts.
The code can be found at github.com/bwbrunton/dmd-neuro/.

4. Results

4.1. Sensorimotor maps

We  analyzed datasets recorded from sub-dural electrode arrays
implanted in two  patients monitored for seizure loci localization.

http://github.com/bwbrunton/dmd-neuro/
http://github.com/bwbrunton/dmd-neuro/
http://github.com/bwbrunton/dmd-neuro/
http://github.com/bwbrunton/dmd-neuro/
http://github.com/bwbrunton/dmd-neuro/
http://github.com/bwbrunton/dmd-neuro/
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Fig. 9. Automated spindle detection threshold and clustering parameters for subjects A (top row) and B (bottom row). The spindle detection thresholds were computed by
robust regression of a linear fit to log(P) and log(f) collected over all windowed DMD  spectra of the sleep recordings. The results of the fit (blue solid lines) and the extent of
the  ±2.5× standard deviation of the residuals (blue dashed lines) are shown in (a) and (b) and (d)–(e) for data from Subjects A and B, respectively. (c) and (f) Normalized BIC
values  computed as a function of number of clusters for various values r of the reduced dimensionality of L, shown as differently colored lines. The number of clusters for
which  the BIC was minimal was consistently close to 4, which was chosen as the most parsimonious number of spindle stereotypes in the recording for both subjects. (For
interpretation of the references to color in this figure legend, the reader is referred to the web  version of the article.)

To validate the DMD  approach to spatial–temporal pattern analysis,
we derived sensorimotor maps based on a simple motor repetition
task where the subjects were instructed to move either their tongue
or the hand contralateral to the implanted electrode array. This task
was previously analyzed for a large cohort of patients, and a spectral
analysis of each channel revealed consistent sites in sensorimotor
cortex whose power changed specifically for each movement Miller
et al. (2007).

We  performed a related analysis based on the DMD  spectrum
and derived motor maps of tongue and hand movements that
are closely consistent with the previously described results of
Miller et al. (2007). DMD  spectra were computed for each epoch
of the motor screen, and DMD  modes within a low frequency band
(8–32 Hz) and a high frequency band (76–100 Hz) were averaged to
derive mean modes in each band. Next the baseline low frequency
and high frequency mean modes were subtracted from the move-
ment epochs to produce the frequency-dependent sensorimotor
maps. Fig. 8 shows these frequency-dependent sensorimotor maps
as z-scores of change from baseline, as described in Section 3.2.2.

4.1.1. Hand and tongue movements led to differentiable changes
at low and high frequencies

In the low frequency band, there was a generalized decrease in
correlation across sensorimotor cortex in both the tongue and hand
movement epochs. These decreases are visualized by decreases in
relative DMD  mode magnitude across the most posterior columns
of the electrode array (Fig. 8a and b). In the high frequency band, we
found relatively local groups of electrodes within sensorimotor cor-
tex where DMD  mode amplitude increased selectively for tongue
and hand movement. The foci for hand movement were more dor-
sal than the tongue movement sites (Fig. 8c and d), consistent with
known organization of the human sensorimotor cortex.

4.2. Sleep spindle networks

In a novel application of DMD, we developed methods to extract
and identify sleep spindle networks in human ECoG recordings. Our
approach to spindle network extraction is based on the DMD  spec-
tra of windowed ECoG data (Fig. 7). DMD  modes corresponding

to larger than expected power in the spindle band were collected
in a library, whose elements were then clustered to determine
stereotypes of spindle networks in the recording. To consider all
spindle-type activity in an inclusive way, we defined the spindle
band to be 14 ± 5 Hz. Each spindle network stereotype represents
strength of spatial correlations between electrodes and may be
visualized on a grid of electrode locations.

We applied our spindle network extraction algorithm to
ECoG recorded during non-REM sleep from sub-dural electrodes
implanted over the temporal lobe of two human subjects. Subject
A had a 64-channel electrode grid implanted over the right hemi-
sphere, and Subject B had a 48-channel electrode grid implanted
over the left hemisphere.

4.2.1. Spindle detection thresholds and clustering parameters
As described in Section 3.3.2, detection of candidate spindle

networks was based on larger than expected power of the win-
dowed DMD  spectrum in the spindle band. The expected power
in this band was computed as a fit to all the DMD  spectra in the
duration of the recording (frequency f versus mode amplitude P).
Fig. 9a and d shows these fits for Subjects A and B, respectively,
where the data points in log(f) and log(P) was  fit by a robust lin-
ear regression. Fig. 9b and e shows the same fits plotted as P as a
function of f, where the distribution was proportional to 1/f˛ where

 ̨ was 0.8838 and 0.8473 for Subjects A and B, respectively. Can-
didate spindle networks were required to have power above 2.5×
the standard deviation of residuals in the regression, shown as the
dashed blue lines in Fig. 9.

After gathering all putative spindle networks in the spindle
library L, we  used a BIC analysis to determine the number of clus-
ters (spindle networks stereotypes) most parsimonious with the
data. Fig. 9c and f shows the normalized BIC values as a function of
number of clusters for the two  subjects’ datasets. The different col-
ored lines show different dimensionality of subspaces r on which
the BIC analysis was  computed (see Section 3.3.3). For each col-
ored line, the range of BIC values were normalized to be visualized
between 0 and 1. Fortunately, although using different values of r
led to slightly different numbers of clusters that optimized the BIC,
the results were closely consistent regardless of r. For Subject A,
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Fig. 10. Visualization of spindle network stereotypes for two subjects, computed from ECoG recordings during non-REM sleep. The spindle networks are shown on the ECoG
recording grid, where both the size and color of dots at each electrode represent the strength of the spatial correlation between electrodes (see color bar).

the most parsimonious number of clusters was between 3 and 5,
so we chose the median value of 4. Similarly for Subject B, the most
parsimonious number of clusters was either 3 or 4, so we chose to
round the median value of 3.5 up to 4 clusters.

4.2.2. Spindle networks have separable but overlapping spatial
patterns

The spindle network detection and clustering approach found
distinct stereotypes of spindle networks, whose spatial distribu-
tions are visualized for Subjects A and B in Fig. 10. These stereotypes
are taken as the centroids of the clusters from the clustering anal-
ysis, reshaped based on the arrangement of electrodes within
the arrays and visualized on top of a structural rendering of the
brain. The spindle networks are not spatially exclusive; in other
words, some electrodes participate in multiple spindle networks.
For instance, compare spindle networks 3 and 4 for Subject A, which
have many electrodes in common despite clearly separable dis-
tributions of mode weights. These observations quantify previous
observations that spindle-band activity co-occur at different elec-
trodes in a number of distinct patterns, as noted by Johnson et al.
(2012) and Nir et al. (2011). A much more detailed exploration of
our findings about spindle networks is in a companion manuscript
(Johnson et al. (2015)).

Two specific examples of spindle events classified as different
stereotypes are shown in Fig. 11. The electrode array recordings
around the spindle event are shown as normalized voltage recor-
dings over time, where different electrodes are offset vertically for

clarity of visualization. Gray traces show non-spindle parts of the
recording, and the spindle event is highlighted using the same col-
ormap as in Fig. 10. During each event, many electrodes across
the grid had sinusoidal-type oscillations that co-occurred. These
oscillations were of different magnitudes, and the color of each
voltage trace corresponds to the relative magnitudes as extracted
by the DMD  modes. In Fig. 11b, the spindle event is preceded by
a K-complex; it is well known that spindle events often follow K-
complexes. The K-complex was correctly rejected as a non-spindle
event despite a generalized elevation in power overlapping with
the spindle band.

4.2.3. Basic statistics of spindle events
In addition to separation of spindle activity to distinct loca-

tions on the cortex, spindle networks were also distinct from each
other by their characteristic frequencies of oscillation. Importantly,
these frequencies were not used in the unsupervised clustering.
Fig. 12a and e shows the distribution of frequencies for spindle
events of each network stereotype as box plots. Outliers were omit-
ted from these plots. For Subject A, frequency distributions for all
networks were pair-wise statistically significantly different from
each other (except for networks 3 versus 4), as assessed by t-tests,
with p < 10−3. For Subject B, spindle network 4 had a frequency
that was statistically significantly different from the other networks
(t-test, p < 10−3).

The different networks also differed in their occurrence and
duration. For Subject A (Fig. 12b), network 1 occurred less often

Fig. 11. Examples of spindle events from Subject A belonging to network 3 (a) and network 4 (b) in Fig. 10. The normalized recorded voltage at each electrode is shown as
a  function of time, where different electrodes are offset vertically for clarity. The gray traces are non-spindle periods, and the highlight regions are detected spindle events.
The  color of traces reflect the magnitude of the DMD  mode in the spindle band, using the same colormap as in Fig. 10. The schematic at right gives the mapping of electrode
numbers to their relative positions in the grid for subject A. Note in (b) that the spindle event followed a K-complex, which was correctly rejected as a non-spindle event.
(For  interpretation of the references to color in this figure legend, the reader is referred to the web  version of the article.)
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Fig. 12. Basic statistics of spindle events. For Subject A (top row) and Subject B (bottom row), spindle events belonging to each spindle network stereotype were quantified
in  by their carrying frequency (a) and (e), occurrence per minute (b) and (f), and duration (c) and (g). In addition, the total number of events (of all network stereotypes) as a
function of time in recording is shown in (d) and (h). The mean number of events per 30 s is shown as the blue horizontal line.

than the other networks by a factor of approximately half. For Sub-
ject B (Fig. 12f), network 3 occurred more often than the other
networks by a factor of approximately three. Fig. 12c and g show
the distribution of durations of events for each spindle network.
Since we imposed a minimum duration of 500 ms  (Section 3.3.3),
this was the shortest possible event duration. Fig. 12d and h plot the
total number of events (of all network stereotypes) as a function of
time in the sleep recording, at a 30-s resolution. In both subjects,
the number of events decreased towards the end of the recording;
it is possible this decrease reflects a transition to a different state,
including a non-REM sleep stage, REM sleep, or wakefulness.

The characteristic frequencies of networks from Subject A were
generally higher than those from Subject B. Further, we detected
more total spindle events in Subject A than in Subject B. These
differences likely reflect both variations between individuals and
electrode array placement.

5. Discussion

In this work, we presented the first application of a modal
decomposition technique known as dynamic mode decomposition
(DMD) to analyze and visualize large-scale neural recordings. Such
neural recordings are often characterized by coherent patterns of
activity in space (across many channels) at multiple temporal fre-
quencies. We  described how DMD  can be used to extract these
coherent patterns by decomposing the data into a low-dimensional
representation in both space and time. This extraction was  vali-
dated on a simple motor task where selective and separable regions
of sensorimotor cortex were identified. Although DMD  has pre-
viously been described in studying high-dimensional dynamical
systems in a different discipline (Rowley et al., 2009; Schmid and
Sesterhenn, 2008; Schmid, 2010), here we described in detail its
adaption to use with ECoG recordings, providing rules-of-thumb for
its computational implementation and intuition for interpretation
of the extracted modes in the context of neural recordings.

Next, we  presented a novel method to detect and analyze
sleep spindle networks from large-scale human ECoG recor-
dings; automated approaches to characterize these stereotyped
spindle networks had not been previously reported, and the high-
dimensionality of the dataset makes manual scoring by experts

an infeasible task. We  showed that our method reliably detected
spindle networks, which are correlated groups of electrodes that
showed significantly power in the spindle band (14 ± 5 Hz). Fur-
ther, we  found multiple stereotypes of spindle networks for two
different subjects. Spindle networks were distinct from each other
in spatial localization as well as carrying frequency, frequency of
occurrence, and duration. These sleep spindle networks are dis-
covered independently of an explicit behavior and may  represent
functionally connected cortical areas. Although it has not been
possible to make any general observations across these two sub-
jects due to limited sample size and large variability in electrode
location, our automated method enables these analyses to be per-
formed across many subjects, and its computation scales favorably
with increasing numbers of channels in the electrode array recor-
dings.

It was our goal to develop a spindle network detection and
characterization algorithm that minimizes fine-tuning of parame-
ters while maximizing accuracy. Unfortunately, it was not possible
to assess the accuracy of our algorithm against a “gold standard”
labeled dataset, as such a dataset for sleep spindles in large-scale
ECoG does not exist. Most experts who curate sleep data do not
typically identify spindles in subdural grid recordings. Further, it
would be extremely odious to identify spindles on individual elec-
trodes and also group them into distinct networks. To the best
of our knowledge, our algorithm reliably identifies most spindle-
type events detected by the authors’ visual inspection of the data,
and it correctly rejects non-spindle events, including ictal events
and K-complexes. It remains possible that there are other types
of epileptiform activity that we  have not controlled for, although
such activity would only impact our analysis if they have signifi-
cant power in the spindle range. Our further explorations of these
networks are described in a separate manuscript (Johnson et al.,
2015).

Dimensionality reduction is a useful concept in building
meaningful models based on dynamics of neuronal networks
because there exists low-dimensional structures in large-scale data
(Cunningham and Byron, 2014). Ideas from compressive sensing
further suggest that such models may  be accessible even from
limited data, when the system is known to be sufficiently sparse
(Ganguli and Sompolinsky, 2012). Extensions of DMD  that exploit
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underlying data sparsity (including Jovanović et al. (2014) and
Brunton et al. (2013)) have potential to expand the usefulness of
the framework to a larger class of incomplete measurements with
improved robustness.

In contrast to other static modal decomposition techniques,
DMD provides not only modes, but also a relatively low-
dimensional, efficient linear model for how the most dynamically
important modes evolve in time. In other words, the DMD  approx-
imation of the dataset (Eq. (5)) is also a prediction of the system’s
dynamic trajectory. Such dynamic models of high-dimensional
dynamic data are equation-free, in the sense that they are entirely
data-driven and do not rely on a set of governing equations. The
theory of DMD  is well grounded in dynamical systems, so that
this modal decomposition technique can be used to assess system
stability and provide a meaningful basis on which reduced order
dynamic models of large-scale recordings can be made, for example
in neural decoding tasks.

Since the pioneering work of Kalman, linear dynamical systems
have underpinned many of our analytic techniques to understand
noisy, dynamic data, including use of the Kalman Filter for optimal
state estimation. Traditionally, these techniques have been devel-
oped for use in physical systems where the equations of motion
are well known. DMD  interfaces dynamical systems theory with
modern “big-data” measurements and complex systems where it
is infeasible or impossible to acquire true equations of motion; this
perspective has been called the “dynamics of observables” in the
review by Budišić et al. (2012). In particular, the dynamic model
derived by DMD can serve the place of the traditional linear dynam-
ical system in a Kalman Filter framework. Model predictions do
not typically hold for long term; however, even short-term DMD
predictions can inform design of feedback control in complex, non-
linear systems (Potter et al., 2014).

We  propose that DMD  is generally useful for the analysis,
understanding, and visualization of large-scale neural recordings.
In particular, we are exploring DMD-based methods to char-
acterize network-level responses across multiple brain areas to
complex stimulus inputs. We  envision this spatial–temporal modal
decomposition may  be applied to a variety of modalities of
neural measurements, including ECoG, MEG, functional MRI, cal-
cium imaging, LFP, and spike rates of a large collection of single
units.
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Rowley CW,  Mezić I, Bagheri S, Schlatter P, Henningson DS. Spectral analysis of
nonlinear flows. J Fluid Mech 2009;641:115–27.

Rudrauf D, Douiri A, Kovach C, Lachaux J-P, Cosmelli D, Chavez M,  et al. Frequency
flows and the time-frequency dynamics of multivariate phase synchronization
in brain signals. Neuroimage 2006;31(1):209–27.

Schimicek P, Zeitlhofer J, Anderer P, Saletu B. Automatic sleep-spindle detection pro-
cedure: aspects of reliability and validity? Clin EEG Neurosci 1994;25(1):26–9.

Schmid P, Sesterhenn J. Dynamic mode decomposition of numerical and experimen-
tal  data. Bull Am Phys Soc 2008.

Schmid PJ. Dynamic mode decomposition of numerical and experimental data. J
Fluid Mech 2010;656:5–28.

Steriade M,  McCormick DA, Sejnowski TJ. Thalamocortical oscillations in the sleeping
and  aroused brain? Science 1993;262(5134):679–85.

Sweeney-Reed CM,  Nasuto SJ. A novel approach to the detection of synchroni-
sation in EEG based on empirical mode decomposition? J Comput Neurosci
2007;23(1):79–111.

Tu JH, Rowley CW,  Luchtenburg DM,  Brunton SL, Kutz JN. On  dynamic mode decom-
position: theory and applications; 2013 arXiv:1312.0041.

Uhlhaas PJ, Singer W.  Abnormal neural oscillations and synchrony in schizophrenia?
Nat Rev Neurosci 2010;11(2):100–13.

Warby SC, Wendt SL, Welinder P, Munk EG, Carrillo O,  Sorensen HB, et al. Sleep-
spindle detection: crowdsourcing and evaluating performance of experts, non-
experts and automated methods. Nat Methods 2014;11(4):385–92.

Welch PD. The use of fast Fourier transform for the estimation of power spectra: a
method based on time averaging over short, modified periodograms. IEEE Trans
Audio Electroacoust 1967;15(2):70–3.

Wennberg R. Intracranial cortical localization of the human k-complex? Clin Neu-
rophysiol 2010;121(8):1176–86.

http://refhub.elsevier.com/S0165-0270(15)00382-9/sbref0195
http://refhub.elsevier.com/S0165-0270(15)00382-9/sbref0195
http://refhub.elsevier.com/S0165-0270(15)00382-9/sbref0195
http://refhub.elsevier.com/S0165-0270(15)00382-9/sbref0195
http://refhub.elsevier.com/S0165-0270(15)00382-9/sbref0195
http://refhub.elsevier.com/S0165-0270(15)00382-9/sbref0195
http://refhub.elsevier.com/S0165-0270(15)00382-9/sbref0195
http://refhub.elsevier.com/S0165-0270(15)00382-9/sbref0195
http://refhub.elsevier.com/S0165-0270(15)00382-9/sbref0195
http://refhub.elsevier.com/S0165-0270(15)00382-9/sbref0195
http://refhub.elsevier.com/S0165-0270(15)00382-9/sbref0195
http://refhub.elsevier.com/S0165-0270(15)00382-9/sbref0195
http://refhub.elsevier.com/S0165-0270(15)00382-9/sbref0195
http://refhub.elsevier.com/S0165-0270(15)00382-9/sbref0195
http://refhub.elsevier.com/S0165-0270(15)00382-9/sbref0195
http://refhub.elsevier.com/S0165-0270(15)00382-9/sbref0195
http://refhub.elsevier.com/S0165-0270(15)00382-9/sbref0195
http://refhub.elsevier.com/S0165-0270(15)00382-9/sbref0195
http://refhub.elsevier.com/S0165-0270(15)00382-9/sbref0200
http://refhub.elsevier.com/S0165-0270(15)00382-9/sbref0200
http://refhub.elsevier.com/S0165-0270(15)00382-9/sbref0200
http://refhub.elsevier.com/S0165-0270(15)00382-9/sbref0200
http://refhub.elsevier.com/S0165-0270(15)00382-9/sbref0200
http://refhub.elsevier.com/S0165-0270(15)00382-9/sbref0200
http://refhub.elsevier.com/S0165-0270(15)00382-9/sbref0200
http://refhub.elsevier.com/S0165-0270(15)00382-9/sbref0200
http://refhub.elsevier.com/S0165-0270(15)00382-9/sbref0200
http://refhub.elsevier.com/S0165-0270(15)00382-9/sbref0200
http://refhub.elsevier.com/S0165-0270(15)00382-9/sbref0200
http://refhub.elsevier.com/S0165-0270(15)00382-9/sbref0200
http://refhub.elsevier.com/S0165-0270(15)00382-9/sbref0200
http://refhub.elsevier.com/S0165-0270(15)00382-9/sbref0200
http://refhub.elsevier.com/S0165-0270(15)00382-9/sbref0205
http://refhub.elsevier.com/S0165-0270(15)00382-9/sbref0205
http://refhub.elsevier.com/S0165-0270(15)00382-9/sbref0205
http://refhub.elsevier.com/S0165-0270(15)00382-9/sbref0205
http://refhub.elsevier.com/S0165-0270(15)00382-9/sbref0205
http://refhub.elsevier.com/S0165-0270(15)00382-9/sbref0205
http://refhub.elsevier.com/S0165-0270(15)00382-9/sbref0205
http://refhub.elsevier.com/S0165-0270(15)00382-9/sbref0205
http://refhub.elsevier.com/S0165-0270(15)00382-9/sbref0205
http://refhub.elsevier.com/S0165-0270(15)00382-9/sbref0205
http://refhub.elsevier.com/S0165-0270(15)00382-9/sbref0205
http://refhub.elsevier.com/S0165-0270(15)00382-9/sbref0210
http://refhub.elsevier.com/S0165-0270(15)00382-9/sbref0210
http://refhub.elsevier.com/S0165-0270(15)00382-9/sbref0210
http://refhub.elsevier.com/S0165-0270(15)00382-9/sbref0210
http://refhub.elsevier.com/S0165-0270(15)00382-9/sbref0210
http://refhub.elsevier.com/S0165-0270(15)00382-9/sbref0210
http://refhub.elsevier.com/S0165-0270(15)00382-9/sbref0210
http://refhub.elsevier.com/S0165-0270(15)00382-9/sbref0210
http://refhub.elsevier.com/S0165-0270(15)00382-9/sbref0210
http://refhub.elsevier.com/S0165-0270(15)00382-9/sbref0210
http://refhub.elsevier.com/S0165-0270(15)00382-9/sbref0210
http://refhub.elsevier.com/S0165-0270(15)00382-9/sbref0210
http://refhub.elsevier.com/S0165-0270(15)00382-9/sbref0210
http://refhub.elsevier.com/S0165-0270(15)00382-9/sbref0210
http://refhub.elsevier.com/S0165-0270(15)00382-9/sbref0210
http://refhub.elsevier.com/S0165-0270(15)00382-9/sbref0210
http://refhub.elsevier.com/S0165-0270(15)00382-9/sbref0210
http://refhub.elsevier.com/S0165-0270(15)00382-9/sbref0215
http://refhub.elsevier.com/S0165-0270(15)00382-9/sbref0215
http://refhub.elsevier.com/S0165-0270(15)00382-9/sbref0215
http://refhub.elsevier.com/S0165-0270(15)00382-9/sbref0215
http://refhub.elsevier.com/S0165-0270(15)00382-9/sbref0215
http://refhub.elsevier.com/S0165-0270(15)00382-9/sbref0215
http://refhub.elsevier.com/S0165-0270(15)00382-9/sbref0215
http://refhub.elsevier.com/S0165-0270(15)00382-9/sbref0215
http://refhub.elsevier.com/S0165-0270(15)00382-9/sbref0215
http://refhub.elsevier.com/S0165-0270(15)00382-9/sbref0215
http://refhub.elsevier.com/S0165-0270(15)00382-9/sbref0215
http://refhub.elsevier.com/S0165-0270(15)00382-9/sbref0215
http://refhub.elsevier.com/S0165-0270(15)00382-9/sbref0215
http://refhub.elsevier.com/S0165-0270(15)00382-9/sbref0215
http://refhub.elsevier.com/S0165-0270(15)00382-9/sbref0215
http://refhub.elsevier.com/S0165-0270(15)00382-9/sbref0215
http://refhub.elsevier.com/S0165-0270(15)00382-9/sbref0220
http://refhub.elsevier.com/S0165-0270(15)00382-9/sbref0220
http://refhub.elsevier.com/S0165-0270(15)00382-9/sbref0220
http://refhub.elsevier.com/S0165-0270(15)00382-9/sbref0220
http://refhub.elsevier.com/S0165-0270(15)00382-9/sbref0220
http://refhub.elsevier.com/S0165-0270(15)00382-9/sbref0220
http://refhub.elsevier.com/S0165-0270(15)00382-9/sbref0220
http://refhub.elsevier.com/S0165-0270(15)00382-9/sbref0220
http://refhub.elsevier.com/S0165-0270(15)00382-9/sbref0220
http://refhub.elsevier.com/S0165-0270(15)00382-9/sbref0220
http://refhub.elsevier.com/S0165-0270(15)00382-9/sbref0220
http://refhub.elsevier.com/S0165-0270(15)00382-9/sbref0220
http://refhub.elsevier.com/S0165-0270(15)00382-9/sbref0220
http://refhub.elsevier.com/S0165-0270(15)00382-9/sbref0220
http://refhub.elsevier.com/S0165-0270(15)00382-9/sbref0225
http://refhub.elsevier.com/S0165-0270(15)00382-9/sbref0225
http://refhub.elsevier.com/S0165-0270(15)00382-9/sbref0225
http://refhub.elsevier.com/S0165-0270(15)00382-9/sbref0225
http://refhub.elsevier.com/S0165-0270(15)00382-9/sbref0225
http://refhub.elsevier.com/S0165-0270(15)00382-9/sbref0225
http://refhub.elsevier.com/S0165-0270(15)00382-9/sbref0225
http://refhub.elsevier.com/S0165-0270(15)00382-9/sbref0225
http://refhub.elsevier.com/S0165-0270(15)00382-9/sbref0225
http://refhub.elsevier.com/S0165-0270(15)00382-9/sbref0225
http://refhub.elsevier.com/S0165-0270(15)00382-9/sbref0225
http://refhub.elsevier.com/S0165-0270(15)00382-9/sbref0225
http://refhub.elsevier.com/S0165-0270(15)00382-9/sbref0225
http://refhub.elsevier.com/S0165-0270(15)00382-9/sbref0225
http://refhub.elsevier.com/S0165-0270(15)00382-9/sbref0230
http://refhub.elsevier.com/S0165-0270(15)00382-9/sbref0230
http://refhub.elsevier.com/S0165-0270(15)00382-9/sbref0230
http://refhub.elsevier.com/S0165-0270(15)00382-9/sbref0230
http://refhub.elsevier.com/S0165-0270(15)00382-9/sbref0230
http://refhub.elsevier.com/S0165-0270(15)00382-9/sbref0230
http://refhub.elsevier.com/S0165-0270(15)00382-9/sbref0230
http://refhub.elsevier.com/S0165-0270(15)00382-9/sbref0230
http://refhub.elsevier.com/S0165-0270(15)00382-9/sbref0230
http://refhub.elsevier.com/S0165-0270(15)00382-9/sbref0230
http://refhub.elsevier.com/S0165-0270(15)00382-9/sbref0230
http://refhub.elsevier.com/S0165-0270(15)00382-9/sbref0230
http://refhub.elsevier.com/S0165-0270(15)00382-9/sbref0235
http://refhub.elsevier.com/S0165-0270(15)00382-9/sbref0235
http://refhub.elsevier.com/S0165-0270(15)00382-9/sbref0235
http://refhub.elsevier.com/S0165-0270(15)00382-9/sbref0235
http://refhub.elsevier.com/S0165-0270(15)00382-9/sbref0235
http://refhub.elsevier.com/S0165-0270(15)00382-9/sbref0235
http://refhub.elsevier.com/S0165-0270(15)00382-9/sbref0235
http://refhub.elsevier.com/S0165-0270(15)00382-9/sbref0235
http://refhub.elsevier.com/S0165-0270(15)00382-9/sbref0235
http://refhub.elsevier.com/S0165-0270(15)00382-9/sbref0235
http://refhub.elsevier.com/S0165-0270(15)00382-9/sbref0235
http://refhub.elsevier.com/S0165-0270(15)00382-9/sbref0235
http://refhub.elsevier.com/S0165-0270(15)00382-9/sbref0235
http://refhub.elsevier.com/S0165-0270(15)00382-9/sbref0235
http://refhub.elsevier.com/S0165-0270(15)00382-9/sbref0235
http://refhub.elsevier.com/S0165-0270(15)00382-9/sbref0235
http://refhub.elsevier.com/S0165-0270(15)00382-9/sbref0235
http://refhub.elsevier.com/S0165-0270(15)00382-9/sbref0235
http://refhub.elsevier.com/S0165-0270(15)00382-9/sbref0235
http://refhub.elsevier.com/S0165-0270(15)00382-9/sbref0235
http://refhub.elsevier.com/S0165-0270(15)00382-9/sbref0235
http://refhub.elsevier.com/S0165-0270(15)00382-9/sbref0235
http://refhub.elsevier.com/S0165-0270(15)00382-9/sbref0240
http://refhub.elsevier.com/S0165-0270(15)00382-9/sbref0240
http://refhub.elsevier.com/S0165-0270(15)00382-9/sbref0240
http://refhub.elsevier.com/S0165-0270(15)00382-9/sbref0240
http://refhub.elsevier.com/S0165-0270(15)00382-9/sbref0240
http://refhub.elsevier.com/S0165-0270(15)00382-9/sbref0240
http://refhub.elsevier.com/S0165-0270(15)00382-9/sbref0240
http://refhub.elsevier.com/S0165-0270(15)00382-9/sbref0240
http://refhub.elsevier.com/S0165-0270(15)00382-9/sbref0240
http://refhub.elsevier.com/S0165-0270(15)00382-9/sbref0240
http://refhub.elsevier.com/S0165-0270(15)00382-9/sbref0245
http://refhub.elsevier.com/S0165-0270(15)00382-9/sbref0245
http://refhub.elsevier.com/S0165-0270(15)00382-9/sbref0245
http://refhub.elsevier.com/S0165-0270(15)00382-9/sbref0245
http://refhub.elsevier.com/S0165-0270(15)00382-9/sbref0245
http://refhub.elsevier.com/S0165-0270(15)00382-9/sbref0245
http://refhub.elsevier.com/S0165-0270(15)00382-9/sbref0245
http://refhub.elsevier.com/S0165-0270(15)00382-9/sbref0245
http://refhub.elsevier.com/S0165-0270(15)00382-9/sbref0245
http://refhub.elsevier.com/S0165-0270(15)00382-9/sbref0245
http://refhub.elsevier.com/S0165-0270(15)00382-9/sbref0245
http://refhub.elsevier.com/S0165-0270(15)00382-9/sbref0245
http://refhub.elsevier.com/S0165-0270(15)00382-9/sbref0245
http://refhub.elsevier.com/S0165-0270(15)00382-9/sbref0250
http://refhub.elsevier.com/S0165-0270(15)00382-9/sbref0250
http://refhub.elsevier.com/S0165-0270(15)00382-9/sbref0250
http://refhub.elsevier.com/S0165-0270(15)00382-9/sbref0250
http://refhub.elsevier.com/S0165-0270(15)00382-9/sbref0250
http://refhub.elsevier.com/S0165-0270(15)00382-9/sbref0250
http://refhub.elsevier.com/S0165-0270(15)00382-9/sbref0250
http://refhub.elsevier.com/S0165-0270(15)00382-9/sbref0250
http://refhub.elsevier.com/S0165-0270(15)00382-9/sbref0250
http://refhub.elsevier.com/S0165-0270(15)00382-9/sbref0250
http://refhub.elsevier.com/S0165-0270(15)00382-9/sbref0250
http://refhub.elsevier.com/S0165-0270(15)00382-9/sbref0250
http://refhub.elsevier.com/S0165-0270(15)00382-9/sbref0250
http://refhub.elsevier.com/S0165-0270(15)00382-9/sbref0250
http://refhub.elsevier.com/S0165-0270(15)00382-9/sbref0250
http://refhub.elsevier.com/S0165-0270(15)00382-9/sbref0250
http://refhub.elsevier.com/S0165-0270(15)00382-9/sbref0250
http://refhub.elsevier.com/S0165-0270(15)00382-9/sbref0250
http://refhub.elsevier.com/S0165-0270(15)00382-9/sbref0250
http://refhub.elsevier.com/S0165-0270(15)00382-9/sbref0255
http://refhub.elsevier.com/S0165-0270(15)00382-9/sbref0255
http://refhub.elsevier.com/S0165-0270(15)00382-9/sbref0255
http://refhub.elsevier.com/S0165-0270(15)00382-9/sbref0255
http://refhub.elsevier.com/S0165-0270(15)00382-9/sbref0255
http://refhub.elsevier.com/S0165-0270(15)00382-9/sbref0255
http://refhub.elsevier.com/S0165-0270(15)00382-9/sbref0255
http://refhub.elsevier.com/S0165-0270(15)00382-9/sbref0255
http://refhub.elsevier.com/S0165-0270(15)00382-9/sbref0255
http://refhub.elsevier.com/S0165-0270(15)00382-9/sbref0255
http://refhub.elsevier.com/S0165-0270(15)00382-9/sbref0255
http://refhub.elsevier.com/S0165-0270(15)00382-9/sbref0255
http://refhub.elsevier.com/S0165-0270(15)00382-9/sbref0255
http://refhub.elsevier.com/S0165-0270(15)00382-9/sbref0255
http://refhub.elsevier.com/S0165-0270(15)00382-9/sbref0255
http://refhub.elsevier.com/S0165-0270(15)00382-9/sbref0255
http://refhub.elsevier.com/S0165-0270(15)00382-9/sbref0255
http://refhub.elsevier.com/S0165-0270(15)00382-9/sbref0255
http://refhub.elsevier.com/S0165-0270(15)00382-9/sbref0255
http://refhub.elsevier.com/S0165-0270(15)00382-9/sbref0255
http://refhub.elsevier.com/S0165-0270(15)00382-9/sbref0255
http://refhub.elsevier.com/S0165-0270(15)00382-9/sbref0255
http://refhub.elsevier.com/S0165-0270(15)00382-9/sbref0255
http://refhub.elsevier.com/S0165-0270(15)00382-9/sbref0255
http://refhub.elsevier.com/S0165-0270(15)00382-9/sbref0255
http://refhub.elsevier.com/S0165-0270(15)00382-9/sbref0255
http://refhub.elsevier.com/S0165-0270(15)00382-9/sbref0255
http://refhub.elsevier.com/S0165-0270(15)00382-9/sbref0255
http://refhub.elsevier.com/S0165-0270(15)00382-9/sbref0255
http://refhub.elsevier.com/S0165-0270(15)00382-9/sbref0260
http://refhub.elsevier.com/S0165-0270(15)00382-9/sbref0260
http://refhub.elsevier.com/S0165-0270(15)00382-9/sbref0260
http://refhub.elsevier.com/S0165-0270(15)00382-9/sbref0260
http://refhub.elsevier.com/S0165-0270(15)00382-9/sbref0260
http://refhub.elsevier.com/S0165-0270(15)00382-9/sbref0260
http://refhub.elsevier.com/S0165-0270(15)00382-9/sbref0260
http://refhub.elsevier.com/S0165-0270(15)00382-9/sbref0260
http://refhub.elsevier.com/S0165-0270(15)00382-9/sbref0260
http://refhub.elsevier.com/S0165-0270(15)00382-9/sbref0260
http://refhub.elsevier.com/S0165-0270(15)00382-9/sbref0260
http://refhub.elsevier.com/S0165-0270(15)00382-9/sbref0260
http://refhub.elsevier.com/S0165-0270(15)00382-9/sbref0260

	Extracting spatial–temporal coherent patterns in large-scale neural recordings using dynamic mode decomposition
	1 Introduction
	1.1 Summary of computational developments
	1.2 Summary of experimental demonstrations
	1.2.1 Sensorimotor maps
	1.2.2 Sleep spindle networks


	2 Computing the dynamic mode decomposition (DMD)
	2.1 Exact DMD
	2.1.1 Data reconstruction from DMD modes
	2.1.2 DMD, PCA and ICA on a synthetic dataset
	2.1.3 Connections to related methods
	2.1.4 Additional properties and practical limitations

	2.2 Implementing DMD with an augmented data matrix
	2.3 DMD modes of ECoG data
	2.3.1 Recommended parameter values

	2.4 The DMD power spectrum
	2.5 Robustness and accuracy of DMD
	2.5.1 Robustness of spatial modes to subsampling the data
	2.5.2 Consistency of spatial modes to additive noise


	3 Materials and methods
	3.1 Collection and preprocessing of ECoG recordings
	3.1.1 Subjects
	3.1.2 Recording and data preprocessing

	3.2 Sensorimotor mapping
	3.2.1 Motor screen task
	3.2.2 Sensorimotor mapping by DMD

	3.3 Spindle network extraction
	3.3.1 Sleep identification
	3.3.2 Spindle detection criteria
	3.3.3 Clustering spindle networks

	3.4 Software availability

	4 Results
	4.1 Sensorimotor maps
	4.1.1 Hand and tongue movements led to differentiable changes at low and high frequencies

	4.2 Sleep spindle networks
	4.2.1 Spindle detection thresholds and clustering parameters
	4.2.2 Spindle networks have separable but overlapping spatial patterns
	4.2.3 Basic statistics of spindle events


	5 Discussion
	Author's contribution
	Funding
	Acknowledgements
	References


