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Centering Data Improves the Dynamic Mode Decomposition\ast 
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Abstract. Dynamic mode decomposition (DMD) is a data-driven method that models high-dimensional time
series as a sum of spatiotemporal modes, where the temporal modes are constrained by linear dy-
namics. For nonlinear dynamical systems exhibiting strongly coherent structures, DMD can be a
useful approximation to extract dominant, interpretable modes. In many domains with large spa-
tiotemporal data---including fluid dynamics, video processing, and finance---the dynamics of interest
are often perturbations about fixed points or equilibria, which motivates the application of DMD
to centered (i.e., mean-subtracted) data. In this work, we show that DMD with centered data is
equivalent to incorporating an affine term in the dynamic model and is not equivalent to computing
a discrete Fourier transform. Importantly, DMD with centering can always be used to compute
eigenvalue spectra of the dynamics. However, in many cases DMD without centering cannot model
the corresponding dynamics, most notably if the dynamics have full effective rank. Additionally,
we generalize the notion of centering to extracting arbitrary, but known, fixed frequencies from the
data. We corroborate these theoretical results numerically on three nonlinear examples: the Lorenz
system, a surveillance video, and brain recordings. Since centering the data is simple and compu-
tationally efficient, we recommend it as a preprocessing step before DMD; furthermore, we suggest
that it can be readily used in conjunction with many other popular implementations of the DMD
algorithm.
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1. Introduction. Recent advances in sensing, data storage, and computing technologies
have resulted in an unprecedented increase in the availability of large-scale measurements.
Many measurements come from high-dimensional, complex systems in which the governing
equations are poorly understood or entirely unknown, which has motivated the development
of data-driven techniques for characterizing and modeling spatiotemporal dynamics. Impor-
tantly, these techniques must be computationally efficient and interpretable, providing insights
into the underlying physics and potentially enabling predictions for rapid manipulation and
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Figure 1. An illustration of the benefit of centering for one-dimensional regression, where the data (xj , yj)
is generated by an affine model with noise. (a) Data fit to affine model y = ax + b yields a good fit. (b) Data
fit to linear model y = ax yields a poor fit. (c) Centered data (\=xj \=yj) fit to linear model \=y = a\=x yields a good fit.

control.
One popular method for modeling such systems is the dynamic mode decomposition (DMD)

[41, 42, 40, 33, 49, 25]. Like principal component analysis (PCA) [22, 56] and independent
component analysis (ICA) [21], DMD is a dimensionality reduction technique that decom-
poses data into a set of spatial and temporal modes. Unlike PCA and ICA, DMD makes the
additional assumption that the data are observations from an underlying dynamical system.
In particular, the dynamics are assumed to be approximately linear, and the data are decom-
posed into pairs of interpretable spatial and temporal modes. DMD has been successfully
applied in a wide variety of disciplines, including fluid dynamics [43], neuroscience [6], disease
modeling [38], finance [32], and computer vision [16]. In addition, several extensions and
variations to the DMD algorithm have been developed (see [23, 55, 26, 58, 37, 24, 3], among
many others).

For many systems of interest, the dynamics we want to model are perturbations about
equilibria. To name a few specific examples, in hydrodynamics we may model motion of a
fluid about a base flow [34, 46]; in video processing we may extract the foreground from a
static background [45]; and in climate science we may analyze anomalies that depart from
long-term averages [18, 13]. Further, linearizing about equilibria provides key information on
the stability of the system about these fixed points. If the data are oscillating about the fixed
point, the mean of the measurement data is a natural estimate of an unknown equilibrium
point; therefore, it is natural to apply DMD on mean-subtracted data.

In a complementary perspective, we may think of DMD computed over a short time
window as a multivariate Taylor expansion of the dynamics, discarding quadratic and higher
order terms. It follows that the model should include an affine, or bias, term (Figure 1), which
is usually not a part of the DMD model; if DMD is computed on centered data, then this
affine term is expected to be small (in fact, one of our results is that it will be zero).

In this work, we show that centering data improves the performance of DMD. Previous
work has suggested that computing the DMD of centered data may be restrictive and have
undesirable consequences [8]. In particular, Chen, Tu, and Rowley [8] show that DMD on
mean-subtracted data is equivalent to a temporal discrete Fourier transform (DFT), restricting
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1922 HIRSH, HARRIS, KUTZ, AND BRUNTON

Table 1
Comparison of performance of DMD with and without centering. A \ding{51} indicates that the method does

correctly extract the spectrum and modes of the system in each column.

Data generation

Linear system
\bfitx j+1 = \bfitA \bfitx j

Affine system
\bfitx j+1 = \bfitA \bfitx j + \bfitb 

M
et
h
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w
/
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ce
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te
ri
n
g

\ding{51}

(Theorem 4.6)
sometimes

(Theorem 5.3)
D
M
D

w
/

ce
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n
g

\ding{51}

(Theorem 5.2)
\ding{51}

(Theorem 4.8)

the frequencies extracted to be independent of the dataset. This argument hinged on the mean-
subtracted data being full rank; however, here we show that, in linear systems that contain
a nonzero fixed point, mean-subtracted data will always have linearly dependent columns.
Therefore, DMD on centered data does not converge to the DFT. Furthermore, our proposed
method of centering the data successfully extracts the equilibrium and dynamics about this
equilibrium.

In section 2 we review the DMD algorithm, focusing on comparing the SVD-based ap-
proach to the companion matrix approach. We propose centering the data in section 3, showing
that it is equivalent to incorporating an affine term in the DMD model. Section 4 concerns
the uniqueness of the DMD modes and whether the DMD problem is well-posed, generalizing
previous results to the case where data may be low rank. Section 5 compares DMD with and
without centering, including theory and numerical examples. We find that, in the case of lin-
ear dynamics about an equilibrium point, DMD with centering can always extract the correct
dynamics. However, DMD without centering sometimes produces an inaccurate model. These
results are summarized in Table 1. The work by Chen, Tu, and Rowley [8] is discussed in
detail in section 6, where we argue that DMD with centering is not equivalent to a DFT. This
notion of data centering is generalized in section 7 to extract dynamics while subtracting any
known fixed frequencies. Section 8 demonstrates DMD with centering and fixed frequency
subtraction on three nonlinear examples: the Lorenz system, background-foreground separa-
tion of a video, and brain recordings. Many of the proofs in these sections assume the data
are state observations of a linear system. Applications of DMD do not necessarily satisfy this
assumption. As a practical recommendation, we suggest centering data as a preprocessing
step in DMD. All the code used to reproduce results in the figures is openly available at
https://github.com/sethhirsh/DMD with Centering.

2. Background. Initially developed in the fluid dynamics community, dynamic mode de-
composition (DMD) has become a popular tool for analyzing large-scale dynamical systems in
many different application domains [25, 43]. In this section we briefly review two formulations
of this problem.
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Notation
T + 1 number of time samples
n number of features
\bfitA \BbbR n\times n matrix that generates a dynamical system
r rank of \bfitA 
\bfitX \BbbR n\times T+1 set of measurement snapshots ranging in time

from \bfitx 1 through \bfitx T+1

\bfitX 1 \BbbR n\times T matrix containing \bfitx 1 through \bfitx T

\bfitX 2 \BbbR n\times T matrix containing \bfitx 2 through \bfitx T+1

\bfitmu \BbbR n mean of \bfitX 
\bfitmu 1 \BbbR n mean of \bfitX 1

\bfitmu 2 \BbbR n mean of \bfitX 2

\^\bfitA \BbbR n\times n matrix computed using SVD-based DMD with-
out centering

\=\bfitA \BbbR n\times m matrix computed using SVD-based DMD on
centered matrices \bfitX 1  - \bfitmu 11

\intercal and \bfitX 2  - \bfitmu 21
\intercal 

\bfitC \BbbR T\times T companion matrix
\bfitb \BbbR n affine or bias term in dyanmics
1 \BbbR T vector of ones
\bfitI identity matrix

Consider a set of T + 1 measurement snapshots \bfitx j \in \BbbR n for j = 1, . . . , T + 1, which are
generated by linear dynamics,

(2.1) \bfitx j+1 = \bfitA \bfitx j .

Data which exactly satisfy (2.1) form a Krylov sequence [48].
The goal of DMD is to characterize the dynamics of the system by the eigendecomposition

of the linear operator \bfitA \in \BbbR n\times n:

(2.2) \bfitA \bfitv i = \lambda i\bfitv i for i = 1, . . . , n.

The eigenvectors \bfitv i are typically referred to as the DMD modes. For our theoretical results,
we typically assume that the eigenvalues \lambda i \not = 0 are distinct. For many systems of interest,
the true dynamics may be nonlinear and/or stochastic. In addition, observations may contain
measurement noise. Where the measurements deviate from true linear dynamics, the goal of
DMD is to find the best linear approximation.

Many alternative methods have been developed to compute these eigenvalue/eigenvector
pairs, including the Arnoldi method, or in the case where \bfitA is symmetric the Lanczos algo-
rithm [2, 27]. However, these methods typically involve explicitly computing \bfitA which may be
computationally prohibitive if n is large [42].

2.1. SVD-based DMD. We first summarize the most commonly used formulation of
DMD, the SVD-based approach, also known as exact DMD [49]. First, let us define the pair
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1924 HIRSH, HARRIS, KUTZ, AND BRUNTON

of snapshot matrices containing the measurement vectors

(2.3) \bfitX 1 =

\left[  | | | 
\bfitx 1 \bfitx 2 \cdot \cdot \cdot \bfitx T

| | | 

\right]  and \bfitX 2 =

\left[  | | | 
\bfitx 2 \bfitx 3 \cdot \cdot \cdot \bfitx T+1

| | | 

\right]  .

If the snapshots satisfy (2.1), then we have that

(2.4) \bfitX 2 = \bfitA \bfitX 1.

Otherwise, we hope to discover the ``best"" \bfitA which approximately satisfies this equation.
One solution to (2.4) is obtained by regression with least squares minimization; we define

this solution to be \^\bfitA . In general, (2.4) may be consistent (having at least one solution)
or inconsistent (having no solution). With these two cases, the corresponding minimization
problem takes the form

(2.5) \^\bfitA =

\Biggl\{ 
min\bfitA \| \bfitA \| F such that \bfitX 2 = \bfitA \bfitX 1 if (2.4) is consistent,

min\bfitA \| \bfitX 2  - \bfitA \bfitX 1\| F if (2.4) is inconsistent.

The solution in either case is given by the least squares fit,

(2.6) \^\bfitA := \bfitX 2\bfitX 
\dagger 
1,

where \bfitX \dagger 
1 denotes the Moore--Penrose pseudoinverse of \bfitX 1 [35]. The DMD modes and eigen-

values in the SVD approach are the eigenvectors and eigenvalues of \^\bfitA , respectively.
When n is large, it may not be practical to compute \^\bfitA \in \BbbR n\times n and its eigendecomposition

directly. If \bfitX 1 is low rank or approximately low rank, we may project the dynamics to a lower-
dimensional basis. In particular, if \bfitX 1 has rank r, we may compute the reduced SVD,

(2.7) \bfitX r
1 := \bfitU r\Sigma r\bfitV 

\intercal 
r ,

where the left singular vectors \bfitU r \in \BbbR n\times r and right singular vectors \bfitV r \in \BbbR T\times r are orthogonal
matrices and \Sigma r is a real positive diagonal matrix [15]. When measurement noise is present,
we define r to be the effective rank of the system (discussed in detail in section 2.3).

We can then define the matrix

\~\bfitA := \bfitU \intercal 
r\bfitX 2\bfitV r\Sigma 

 - 1
r ,

where \~\bfitA \in \BbbR r\times r is much smaller in size than \bfitA . Importantly, Tu et al. showed that the eigen-
values of \~\bfitA are precisely the nonzero eigenvalues of \bfitA [49]. The corresponding eigenvectors
\bfitphi i of \^\bfitA can be found by first computing the eigenvectors \bfitw i of \~\bfitA ,

\~\bfitA \bfitw i = \lambda i\bfitw i,

and then projecting into the original measurement space,

(2.8) \bfitphi i =
1

\lambda i
\bfitX 2\bfitV r\Sigma 

 - 1
r \bfitw i.

In the case where the ranges of \bfitX 1 and \bfitX 2 are equal, (2.8) reduces to \bfitphi i = \bfitU r\bfitw i.
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2.2. Companion matrix approach. An alternative formulation of DMD focuses on the
computation of a so-called companion matrix. Although it is less commonly used in practice,
this original formulation by Schmid [42] is analytically simpler and has been used in some key
theoretical work [8, 1].

We again consider T +1 snapshots \bfitx 1, . . . ,\bfitx T+1 \in \BbbR n which satisfy (2.1). We may express
the last snapshot T + 1 as a linear combination of the first T states and a residual \bfitr \in \BbbR n

which is orthogonal to these T states,

\bfitx T+1 =
T\sum 

j=1

cj\bfitx j + \bfitr such that \bfitr \bot span\{ \bfitx 1, . . .\bfitx T \} ,

where cj \in \BbbR . Equivalently, we may write in matrix form

(2.9) \bfitX 2 = \bfitX 1\bfitC + \bfitr \bfite \intercal T ,

where \bfite T = [0, . . . , 0, 1]\intercal , and

(2.10) \bfitC =

\left[       
0 0 \cdot \cdot \cdot 0 c1
1 0 \cdot \cdot \cdot 0 c2
0 1 0 c3
...

. . .
...

0 0 1 cT

\right]       
is called the companion matrix. The least squares solution for \bfitc = [c1, . . . , cT ] is then given

by \bfitc = \bfitX \dagger 
1\bfitx T+1. Note that all of the residual error in the model is placed on the last time

snapshot. The least squares solution \bfitC to (2.9) is unique if and only if \bfitx 1, . . . ,\bfitx T are linearly
independent [8]. If \bfitx 1, . . . ,\bfitx T are linearly independent, then \bfitC must also equal the least
squares solution,

\bfitC = \bfitX \dagger 
1\bfitX 2.

In some cases, the DMD modes (eigenvalues and eigenvectors of \bfitA , assuming (2.1)) are related
to the eigenvalues and eigenvectors of the companion matrix \bfitC [42], but these eigenvalues are,
in general, not equal. In particular, the eigenvalues are only guaranteed to be equal if the
columns of \bfitX 1 are linearly independent [8, 42].

2.3. Rank versus effective rank. If \bfitX 1 has full column rank, then the companion matrix
approach described in section 2.2 is equivalent to computing the DMDmodes as in (2.2). In the
presence of measurement noise, \bfitX 1 will almost surely have full column rank even in the case
where \bfitA is low rank (r < T < n). In that case, even though the companion matrix approach
(2.10) has a well-posed solution, it yields the wrong number of eigenvalues. Specifically, the
companion matrix approach yields T modes while there are only r signal modes masked by
noise. On the other hand, the SVD-based approach (2.7) can filter out these noise modes with
a good estimate of rank(\bfitA ). Formally, we define the effective rank as follows.

Definition 2.1. Given a set of noisy measurements \bfitY = \bfitX +\eta \bfitZ , where \bfitX is low rank and
elements of \bfitZ are drawn independently from a random distribution with zero mean and finite
variance, we define the effective rank of \bfitY to be the rank of \bfitX .
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In other words, the effective rank of \bfitY is the rank of the data with no measurement
noise (\eta = 0). In general, the effective rank of the data is unknown. However, it may be
estimated from the SVD spectrum [14, 51]. We now claim (and later show in section 6) that
the companion matrix approach yields the DMD modes if and only if \bfitX 1 not only has full
column rank but also has full effective column rank. Although subtle, this distinction will
play an important role in section 6.

3. Centering data. DMD as defined in (2.3) and (2.4) can be thought of as a multivariate
regression of the dynamics. If the mean of \bfitX is not zero, as would occur with data measured
about a nonzero equilibrium or data acquired over a short time interval, then the DMD model
would be improved with an additional affine term,

(3.1) \bfitX 2 = \bfitA \bfitX 1 + \bfitb 1\intercal ,

where \bfitb \in \BbbR n and 1 is a vector of length T whose elements are all one. The corresponding
minimization problem to find \bfitA and \bfitb is given by

(3.2) \~\bfitA , \~\bfitb =

\Biggl\{ 
argmin\bfitA ,\bfitb \| \bfitA \| F s.t. \bfitA \bfitX 1 + \bfitb 1\intercal = \bfitX 2 if (3.1) is consistent,

argmin\bfitA ,\bfitb \| \bfitA \bfitX 1 + \bfitb 1\intercal  - \bfitX 2\| 2F if (3.1) is inconsistent.

As illustrated in Figure 1, the incorporation of an affine term in the one-dimensional
regression model is equivalent to centering xj and yj in the data. For high-dimensional data,
we compute the means of \bfitX 1 and \bfitX 2 as

\bfitmu 1 =
\bfitX 11

1\intercal 1
and \bfitmu 2 =

\bfitX 21

1\intercal 1
.

The corresponding mean-subtracted or centered data matrices are

\=\bfitX 1 = \bfitX 1  - \bfitmu 11
\intercal and \=\bfitX 2 = \bfitX 2  - \bfitmu 21

\intercal ,

and we now solve the unbiased regression problem

(3.3) \=\bfitX 2 = \=\bfitA \=\bfitX 1.

The least squares solution to (3.3) is given by

(3.4) \=\bfitA =

\Biggl\{ 
argmin\bfitA \| \bfitA \| F s.t. \bfitA \=\bfitX 1 = \=\bfitX 2 if (3.3) is consistent,

argmin\bfitA 
\bigm\| \bigm\| \bfitA \=\bfitX 1  - \=\bfitX 2

\bigm\| \bigm\| 2
F

if (3.3) is inconsistent.

Importantly, the minimization problem (3.4) is simpler to solve than the one in (3.2). We
show in Proposition 3.1 that they are equivalent, yielding \~\bfitA = \=\bfitA . The following proposi-
tion, which we include for completeness, is well known among statisticians in the setting of
multivariate regression.

Proposition 3.1. Let \bfitX 1 and \bfitX 2 \in \BbbR n\times T be arbitrary matrices. The minimization problems
(3.2) and (3.4) are equivalent, with solutions \~\bfitA = \=\bfitA and \~\bfitb = \bfitmu 2  - \=\bfitA \bfitmu 1.
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Proof. We have two cases to consider, depending on whether the affine system of equations
(3.1) is linearly consistent (has at least one solution) or inconsistent (has no solution). We
will show that system (3.1) is consistent if and only if (3.3) is consistent as well.

Case 1: Consistent.
When (3.1) is consistent, the affine problem (3.2) is in the constrained (at least one solution
for \bfitA ) case. Note that we do not minimize over the norm of \bfitb . Multiplying the constraint by
\bfone 

\bfone \intercal \bfone yields

\bfitA 
\bfitX 11

1\intercal 1
+ \bfitb 

1\intercal 1

1\intercal 1
=

\bfitX 21

1\intercal 1
,

which can be rearranged to find \~\bfitb = \bfitmu 2  - \bfitA \bfitmu 1. Thus we can write (3.2) as

min
\bfitA 

\| \bfitA \| F such that \=\bfitX 2 = \bfitA \=\bfitX 1,

which is precisely (3.4). Note that, since we assumed the constraint is satisfiable, this implies
that the centered system of equations (3.3) is consistent.

Case 2: Inconsistent.
If no solution to (3.1) exists, then we minimize the residual error without constraints. Taking
the gradient with respect to \bfitb and setting it equal to 0 yields

1\intercal \bfitX \intercal 
1\bfitA 

\intercal + \bfitb \intercal 1\intercal 1 = 1\intercal \bfitX \intercal 
2 ,

and, rearranging, we again find that \~\bfitb = \bfitmu 2  - \bfitA \bfitmu 1. Plugging this into (3.2) yields the
minimization problem

min
\bfitA 

\| \bfitA \bfitX 1 + (\bfitmu 2  - \bfitA \bfitmu 1)1
\intercal  - \bfitX 2\| 2F = min

\bfitA 
\| \bfitA (\bfitX 1  - \bfitmu 11

\intercal ) - (\bfitX 2  - \bfitmu 21
\intercal )\| 2F

= min
\bfitA 

\bigm\| \bigm\| \bfitA \=\bfitX 1  - \=\bfitX 2

\bigm\| \bigm\| 2
F
,

which is precisely (3.4). Note that this also must be inconsistent; otherwise the affine problem
would be consistent, and we would obtain a contradiction.

Remark 3.2. We make no assumptions about the matrices \bfitX 1 and \bfitX 2 in Proposition 3.1.
Therefore, this result does not depend on the system being linear or being generated by a
dynamical system, and thus it is applicable in all regression settings.

Instead of centering \bfitX 1 and \bfitX 2 individually, we may also choose to subtract the overall
mean \bfitmu = 1

T+1

\sum T+1
j=1 \bfitx j from the data. Mean-subtraction of data and normalization of

variance are standard in matrix factorization algorithms such as PCA [56] and ICA [21]. In
many cases, \bfitmu is very similar to \bfitmu 1 and \bfitmu 2. In particular, \bfitmu 1,\bfitmu 2, and \bfitmu are all approximately
equal in the case of neutral dynamics (all of the DMD eigenvalues lie near the unit circle).
Consequently, in this case subtracting the overall mean should yield results similar to those
obtained using \bfitmu 1 and \bfitmu 2. However, in the presence of transients or unstable behavior, these
three values may be very different.

D
ow

nl
oa

de
d 

08
/3

1/
20

 to
 2

05
.1

75
.1

18
.2

22
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1928 HIRSH, HARRIS, KUTZ, AND BRUNTON

4. Uniqueness of modes. The remainder of this paper compares DMD modes and eigen-
values computed with and without centering. To perform such a comparison, it is necessary
that we first establish uniqueness of the DMD modes and corresponding eigenvalues for a
linear system (section 4.1). We then follow with a similar proof for the uniqueness of modes
data generated by an affine linear system (section 4.2). This is key for showing that the modes
from DMD with centering are well defined.

4.1. Uniqueness of dynamic mode decomposition. Following (2.1), (2.3), and (2.4),
assume we have sequential snapshots of data \bfitx 1, . . . ,\bfitx T+1 \in \BbbR n that are generated by linear
dynamics (2.1). In general, there may be infinitely many matrices \bfitA \prime that satisfy

\bfitx j+1 = \bfitA \prime \bfitx j .

Chen, Tu, and Rowley show, using the companion matrix approach, that although \bfitA \prime is not
unique, under specific conditions the corresponding eigenvectors and eigenvalues of \bfitA \prime are.

Theorem 4.1 (Chen et al. [8], Theorem 1 (rephrased)). For the case of T = n, the choices of
eigenvalues \lambda 1, . . . , \lambda n and corresponding eigenvectors \bfitv 1, . . . ,\bfitv n are unique up to a reordering
in j if and only if \bfitx 1, . . . ,\bfitx T are linearly independent and \lambda 1, . . . , \lambda n are distinct.

In other words, even though \bfitA \prime is not unique, all n eigenvalues and eigenvectors of \bfitA \prime 

are unique if and only if \bfitX has full column rank and the eigenvalues are distinct. In the
case of low-rank data, \bfitX will not have full column rank and the eigenvalues of \bfitA \prime will not be
distinct, since \bfitA \prime will have a zero eigenvalue with multiplicity greater than 1. Consequently,
this theorem does not provide much relevant information about uniqueness in the case of
low-rank dynamics. To remedy this, we generalize this result to the case of low-rank data
and prove that the nonzero eigenvalues and corresponding eigenvectors are unique. We first
establish two useful lemmas.

Lemma 4.2. Consider the (p+ 1)\times q rectangular Vandermonde matrix

\Lambda =

\left[     
1 1 \cdot \cdot \cdot 1
\lambda 1 \lambda 2 \cdot \cdot \cdot \lambda q
...

...
...

...
\lambda p
1 \lambda p

2 \cdot \cdot \cdot \lambda p
q

\right]     .

Then the q columns of \Lambda are linearly independent (\Lambda has full column rank) if and only if
q \leq p+ 1 and \lambda 1, \lambda 2, . . . , \lambda q are distinct.

Proof. Assume q \leq p+ 1 (if not, rank(\Lambda ) \leq p+ 1 < q). We form the q \times q submatrix\left[     
1 1 \cdot \cdot \cdot 1
\lambda 1 \lambda 2 \cdot \cdot \cdot \lambda r
...

...
...

...

\lambda q - 1
1 \lambda q - 1

2 \cdot \cdot \cdot \lambda q - 1
q

\right]     ,

which has nonzero determinant [50] if and only if the eigenvalues are distinct.
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Lemma 4.3. Suppose we have sequential time series snapshots \bfitx 1, . . . ,\bfitx T+1 such that
\bfitx j+1 = \bfitA \bfitx j for j = 1, . . . , T . Assume that \bfitA has precisely r distinct, nonzero eigenval-
ues and is the matrix with the smallest rank such that this holds.

\bullet If range(\bfitX 1) = range(\bfitX 2), then \bfitX may be expressed as

(4.1) \bfitX =

\left[  | | | 
\bfitv 1 \bfitv 2 \cdot \cdot \cdot \bfitv r
| | | 

\right]  
\underbrace{}  \underbrace{}  

\bfitV 

\left[     
1 \lambda 1 \lambda 2

1 \cdot \cdot \cdot \lambda T
1

1 \lambda 2 \lambda 2
2 \cdot \cdot \cdot \lambda T

2
...

...
... \cdot \cdot \cdot 

...
1 \lambda r \lambda 2

r \cdot \cdot \cdot \lambda T
r

\right]     
\underbrace{}  \underbrace{}  

\bfLambda \intercal 

,

where \lambda 1, . . . , \lambda r and \bfitv 1, . . .\bfitv r are distinct nonzero eigenvalues and eigenvectors of \bfitA ,
respectively.

\bullet If range(\bfitX 1) \not = range(\bfitX 2), then \bfitX may be expressed as

(4.2) \bfitX =

\left[  | | | | 
\bfitv 0 \bfitv 1 \bfitv 2 \cdot \cdot \cdot \bfitv r
| | | | 

\right]  
\underbrace{}  \underbrace{}  

\bfitV 

\left[       
1 0 0 \cdot \cdot \cdot 0
1 \lambda 1 \lambda 2

1 \cdot \cdot \cdot \lambda T
1

1 \lambda 2 \lambda 2
2 \cdot \cdot \cdot \lambda T

2
...

...
... \cdot \cdot \cdot 

...
1 \lambda r \lambda 2

r \cdot \cdot \cdot \lambda T
r

\right]       
\underbrace{}  \underbrace{}  

\bfLambda \intercal 

,

where \bfitv 0 \in Null(\bfitA ).

Remark 4.4. The condition on minimal rank is equivalent to requiring that span\{ \bfitv 1, . . . ,\bfitv r\} 
= range(\bfitX 2). If one considers another \bfitA \prime that the data are linearly consistent with but with
larger rank, this will lead to another column in \bfitV and a corresponding column of zeros in \Lambda .

Proof. Assume range(\bfitX 1) = range(\bfitX 2). Since \bfitX 2 = \bfitA \bfitX 1, \bfitx 1 \in range(\bfitX 1), and
range(\bfitX 1) = range(\bfitX 2), then \bfitx 1 \in range(\bfitX 2) \subseteq range(\bfitA ). Since the eigenvectors corre-
sponding to the r nonzero eigenvalues form a basis for these ranges, we may express \bfitx 1 as a
linear combination of these vectors, scaled appropriately, so that

\bfitx 1 =
r\sum 

i=1

\bfitv i.

We note that eigenvalues corresponding to the \bfitv i's are distinct. Otherwise, they can be
summed together in the initial condition \bfitx 1. Recursively applying \bfitA to \bfitx 1,

\bfitx 2 = \bfitA \bfitx 1 = \bfitA 

r\sum 
i=1

\bfitv i =

r\sum 
i=1

\lambda i\bfitv r,

\bfitx 3 = \bfitA 2\bfitx 1 =

r\sum 
i=1

\lambda 2
i\bfitv i,
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and, in general,

\bfitx k = \bfitA k - 1\bfitx 1 =

r\sum 
i=1

\lambda k - 1
i \bfitv i.

Putting this in matrix form yields (4.1).
If range(\bfitX 1) \not = range(\bfitX 2), then \bfitx 1 has a component \bfitv 0 which lies in Null(\bfitA ). We scale

\bfitv 0 so that \bfitx 1 =
\sum r

i=0 \bfitv i. Since \bfitv 0 has an associated eigenvalue \lambda 0 = 0, for k \geq 1,

\bfitx k = \bfitA k - 1\bfitx 1 =

r\sum 
i=0

\lambda k - 1
i \bfitv i =

r\sum 
i=1

\lambda k - 1
i \bfitv i,

which yields the decomposition in (4.2).

Note that since the columns of \bfitV correspond to eigenvectors of distinct eigenvalues of
\bfitA , \bfitV has full column rank. We now introduce a definition of well-posedness for the DMD
problem.

Definition 4.5. Suppose we have sequential time series snapshots \bfitx 1, . . . ,\bfitx T+1 such that
\bfitx j+1 = \bfitA \bfitx j. Let \bfitA have r nonzero and distinct eigenvalues \lambda 1, . . . , \lambda r and corresponding
eigenvectors \bfitv 1, . . . ,\bfitv r. We say that the DMD problem is well-posed if the conditions

1. \bfitx 1 is not orthogonal to any \bfitv 1, . . . ,\bfitv r, and either
2a. T \geq r and \bfitX 1 and \bfitX 2 share the same range, or
2b. T \geq r + 1

are satisfied.

We are primarily interested in recovering dynamics for a linear system. The meaning
of resulting DMD modes for a nonlinear dynamical system is unclear, even if the data are,
for example, linearly consistent. If we assume that the data come from a linear system,
then whether or not we can recover that dynamical system depends on the properties of \bfitA .
These assumptions of well-posedness give sufficient conditions for recovering \bfitA . The DMD
problem being well-posed depends on the assumptions made about the underlying system. In
particular, it depends on the rank of the underlying system r. In theory, r is unknown, but
we can estimate it using results such as [14].

In the following sections we apply different methods (such as DMD with centering and
DMD without centering) to various synthetic and real datasets. To compare their perfor-
mances it is important to establish a notion of uniqueness. In particular, in the following
sections we plot the resulting spectra for these different methods. By showing that the modes
for a given linear system are unique, we establish that there is a true set of modes for the
linear system. By comparing the spectra extracted using each of these methods to the true
system, we can assert whether a method can accurately model the dynamics of that system.

We now prove our main uniqueness theorem.

Theorem 4.6 (uniqueness). Suppose we have sequential time series snapshots \bfitx 1, . . . ,\bfitx T+1

such that \bfitx j+1 = \bfitA \bfitx j for j = 1, . . . , T , where \bfitA has r nonzero and distinct eigenvalues
\lambda 1, . . . , \lambda r and corresponding eigenvectors, \bfitv 1, . . . ,\bfitv r. Let \bfitA \prime be any other rank r matrix
which satisfies \bfitx j+1 = \bfitA \prime \bfitx j. If the DMD problem is well-posed, then \bfitA \prime has the same r
nonzero eigenvalues \lambda 1, . . . , \lambda r and corresponding eigenvectors \bfitv 1, . . . ,\bfitv r as \bfitA , and these are
unique up to scaling.
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Proof. First, suppose range(\bfitX 1) = range(\bfitX 2). Since \bfitx j+1 = \bfitA \bfitx j , if we define \bfitX to be
the matrix containing all T + 1 snapshots, then by Lemma 4.3 we can factor \bfitX as follows:

(4.3) \bfitX =

\left[  | | | 
\bfitx 1 \bfitx 2 \cdot \cdot \cdot \bfitx T+1

| | | 

\right]  =

\left[  | | | 
\bfitv 1 \bfitv 2 \cdot \cdot \cdot \bfitv r
| | | 

\right]  
\underbrace{}  \underbrace{}  

\bfitV 

\left[     
1 \lambda 1 \lambda 2

1 \cdot \cdot \cdot \lambda T
1

1 \lambda 2 \lambda 2
2 \cdot \cdot \cdot \lambda T

2
...

...
... \cdot \cdot \cdot 

...
1 \lambda r \lambda 2

r \cdot \cdot \cdot \lambda T
r

\right]     
\underbrace{}  \underbrace{}  

\bfLambda T

,

where \bfitv j are the eigenvectors of \bfitA scaled appropriately so that \bfitx 1 =
\sum r

i=1 \bfitv j . We denote
these matrices \bfitV and \Lambda and note that \bfitV and \Lambda have full column rank (Lemma 4.2).

Suppose there exists another solution with corresponding eigenvalues \lambda \prime 
1, . . . \lambda 

\prime 
r and eigen-

vectors \bfitv \prime 
1, . . . ,\bfitv 

\prime 
r. We construct another factorization:

\bfitX =

\left[  | | | 
\bfitv \prime 
1 \bfitv \prime 

2 \cdot \cdot \cdot \bfitv \prime 
r

| | | 

\right]  
\left[     
1 \lambda \prime 

1 \lambda 
\prime 2
1 \cdot \cdot \cdot \lambda 

\prime T
1

1 \lambda \prime 
2 \lambda 

\prime 2
2 \cdot \cdot \cdot \lambda 

\prime T
2

...
...

... \cdot \cdot \cdot 
...

1 \lambda \prime 
r \lambda 

\prime 2
r \cdot \cdot \cdot \lambda 

\prime T
r

\right]     .

For the eigenvalues of \bfitA and \bfitA \prime to be different, there must exist some \lambda \prime 
i which does not

equal \lambda 1, . . . , \lambda r. Since
\bigl\{ 
[1, \lambda i, \lambda 2

i , \cdot \cdot \cdot , \lambda T
i ] for i = 1, . . . , r

\bigr\} 
spans the row space of \bfitX 2, then

[1 \lambda \prime 
i \lambda 

\prime 2
i \cdot \cdot \cdot \lambda \prime T

i ] must lie in this row space. Hence the (r + 1)\times (T + 1) matrix

(4.4)

\left[       
1 \lambda 1 \lambda 2

1 \cdot \cdot \cdot \lambda T
1

1 \lambda 2 \lambda 2
2 \cdot \cdot \cdot \lambda T

2
...

...
... \cdot \cdot \cdot 

...
1 \lambda r \lambda 2

r \cdot \cdot \cdot \lambda T
r

1 \lambda \prime 
i \lambda 

\prime 2
i \cdot \cdot \cdot \lambda 

\prime T
i

\right]       
must have low row rank. However, since r + 1 \leq T + 1 by assumption, and all the \lambda j 's and
\lambda \prime 
i are all distinct, by Lemma 4.2 (4.4) must have full row rank. With this contradiction we

conclude that the nonzero eigenvalues of \bfitA are unique.
For the eigenvectors of \bfitA , recall from Lemma 4.3 that \bfitX = \bfitV \Lambda \intercal . Since \Lambda has full column

rank, there is a unique solution for \bfitV = \bfitX \Lambda \intercal \dagger . Thus, the r eigenvectors corresponding to
nonzero eigenvalues of \bfitA must be unique up to a scaling. Note that since \bfitX and \Lambda have rank
r, \bfitV must also have rank r and thus have full column rank.

Note that we assumed that \bfitX 1 and \bfitX 2 share the same range. If they do not, since
\bfitX 2 = \bfitA \bfitX 1, there must be a component of \bfitx 1 which is in the nullspace of \bfitA . This results
in appending an extra column \bfitv \bfzero , which is in the nullspace of \bfitA , to \bfitV and an extra row
[1 0 \cdot \cdot \cdot 0] to \Lambda as in (4.2). Following the same method, we find that T \geq r must be replaced
with T \geq r + 1.

4.2. Uniqueness of affine linear model. As we have seen in section 3, DMD with centering
is equivalent to an additional affine term. Thus, in addition to proving that the DMD modes
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are unique, it also important to show uniqueness of the modes for an affine dynamical system
of the form \bfitx j+1 = \bfitA \bfitx j + \bfitb . In the following theorem, we assume that the matrix \bfitA does
not contain an eigenvalue equal to 1. If 1 is an eigenvalue of \bfitA , then there is an inherent
ambiguity in whether this mode is an eigenvector of \bfitA or incorporated into \bfitb . First, we again
define some conditions for the problem to be well-posed.

Definition 4.7. Suppose we have sequential time series snapshots \bfitx 1, . . . ,\bfitx T+1 such that
\bfitx j+1 = \bfitA \bfitx j +\bfitb . Let \bfitA have r nonzero and distinct eigenvalues, \lambda 1, . . . , \lambda r and corresponding
eigenvectors \bfitv 1, . . . ,\bfitv r. We say that the affine DMD problem is well-posed if the conditions

1. \bfitA does not have an eigenvalue equal to 1,
2. \bfitx 1  - \bfitc is not orthogonal to \bfitv 1, . . . ,\bfitv r, and either

3a. T \geq r + 1 and \bfitX 1  - \bfitc 1\intercal and \bfitX 2  - \bfitc 1\intercal share the same range, or
3b. T \geq r + 2

are satisfied, where \bfitc = (\bfitI  - \bfitA ) - 1 \bfitb .

Theorem 4.8 (uniqueness of affine DMD). Suppose we have sequential time series snapshots
\bfitx 1, . . . ,\bfitx T+1 such that \bfitx j+1 = \bfitA \bfitx j + \bfitb for j = 1, . . . , T , where \bfitA has r nonzero and distinct
eigenvalues, \lambda 1, . . . , \lambda r, and corresponding eigenvectors \bfitv 1, . . . ,\bfitv r. Let \bfitA \prime and \bfitb \prime be any other
rank r matrix and vector which satisfy \bfitx j+1 = \bfitA \prime \bfitx j + \bfitb \prime . If the affine DMD problem is well-
posed, then \bfitb \prime = \bfitb and \bfitA \prime has the same r nonzero eigenvalues \lambda 1, . . . , \lambda r and corresponding
eigenvectors \bfitv 1, . . . ,\bfitv r as \bfitA , and these are unique up to scaling.

Proof. Since \bfitA does not have an eigenvalue of 1, then \bfitI  - \bfitA is invertible. Therefore, we
can shift the origin in order to express \bfitx j+1 = \bfitA \bfitx j + \bfitb as \bfitx j+1  - \bfitc = \bfitA (\bfitx j  - \bfitc ), where
\bfitc = (\bfitI  - \bfitA ) - 1\bfitb . By Lemma 4.3, we may express \bfitX  - \bfitc 1\intercal as

(4.5) \bfitX  - \bfitc 1\intercal = \bfitV \Lambda \intercal .

Similarly for \bfitA \prime and \bfitb \prime , \bfitX  - \bfitc \prime 1\intercal = \bfitV \prime \Lambda \prime \intercal . Taking the difference in these equations,

\bfitV \Lambda \intercal = \bfitV \prime \Lambda \prime \intercal + (\bfitc  - \bfitc \prime )1\intercal .

First, assume both that \bfitc \not = \bfitc \prime and that \bfitA and \bfitA \prime do not share all of their eigenvalues. (We
will show that this yields a contradiction.) Without loss of generality, let \lambda be an eigenvalue
of \bfitA but not \bfitA \prime . Hence, \bfitlambda =

\bigl[ 
1 \lambda \cdot \cdot \cdot \lambda T

\bigr] \intercal 
is a column of \Lambda but not \Lambda \prime . Defining \~\Lambda = [\Lambda \prime 1],

then

\bfitV \Lambda T =
\bigl[ 
\bfitV \prime \bfitc  - \bfitc \prime 

\bigr] \biggl[ \Lambda \prime \intercal 

1\intercal 

\biggr] 
=
\bigl[ 
\bfitV \prime \bfitc  - \bfitc \prime 

\bigr] 
\~\Lambda \intercal .

Since \bfitV has full column rank, applying \bfitV \dagger on the left to both sides yields

\Lambda \intercal = \bfitV \dagger \bigl[ \bfitV \prime \bfitc  - \bfitc \prime 
\bigr] 
\~\Lambda \intercal .

If we apply the orthogonal projection \bfitI  - \~\Lambda \intercal \dagger \~\Lambda \intercal on the right to both sides, we see that the
right-hand side is 0. However, \Lambda \intercal (\bfitI  - \~\Lambda \intercal \dagger \~\Lambda \intercal ) cannot be 0 since, by assumption, \Lambda and \Lambda \prime 

have different column spaces. To see this, consider the solution \bfitY to \~\Lambda \bfitY = \Lambda . In particular,
consider a single column of this equation:

(4.6) \~\Lambda \bfity = \bfitlambda .
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If range(\bfitX 1  - \bfitc 1\intercal ) = range(\bfitX 2  - \bfitc 1\intercal ), then using Lemma 4.3 we have\left[       
1 1 \cdot \cdot \cdot 1 1
\lambda \prime 
1 \lambda \prime 

2 \cdot \cdot \cdot \lambda \prime 
r 1

\lambda \prime 
1
2 \lambda \prime 

2
2 \cdot \cdot \cdot \lambda 2

r
\prime 

1
...

...
...

...
...

\lambda \prime 
1
T \lambda \prime 

2
T \cdot \cdot \cdot \lambda \prime 

r
T 1

\right]       
\underbrace{}  \underbrace{}  

\~\bfLambda 

\bfity =

\left[       
1
\lambda 
\lambda 2

...
\lambda T

\right]       .

By Lemma 4.2, if T+1 \geq r+2, then since \lambda , \lambda \prime 
1, . . . , \lambda 

\prime 
r, 1 are all distinct, \bfitlambda cannot be expressed

as a linear combination of the columns of \~\Lambda \intercal . If range(\bfitX 1  - \bfitc 1\intercal ) \not = range(\bfitX 2  - \bfitc 1\intercal ), then
we must append an extra column to \~\Lambda , and the condition in this case is T +1 \geq r+3. Thus,
there does not exist a solution for \bfity in (4.6), and consequently there does not exist a solution
for \bfitY . Thus, \~\Lambda \~\Lambda \dagger \Lambda \not = \Lambda . Taking the transpose and rearranging, we have

\Lambda \intercal 
\Bigl( 
\bfitI  - \~\Lambda \intercal \dagger \~\Lambda \intercal 

\Bigr) 
\not = 0.

This yields a contradiction, from which we conclude that either \bfitc = \bfitc \prime , or \bfitA and \bfitA \prime have the
same nonzero eigenvalues, or both.

First, consider the case where \bfitc = \bfitc \prime . This implies that \bfitV \prime \Lambda \prime \intercal = \bfitV \Lambda \intercal , and using the
same logic as in Theorem 4.6, then the nonzero eigenvalues of \bfitA \prime and \bfitA are equal.

Next, suppose that the nonzero eigenvalues of \bfitA and \bfitA \prime are equal. Thus, \Lambda = \Lambda \prime and\bigl( 
\bfitV  - \bfitV \prime \bigr) \Lambda \intercal =

\bigl( 
\bfitc  - \bfitc \prime 

\bigr) 
1\intercal .

Applying \bfitI  - \Lambda \intercal \dagger \Lambda \intercal to both sides,

0 =
\bigl( 
\bfitc  - \bfitc \prime 

\bigr) 
1\intercal 
\Bigl( 
\bfitI  - \Lambda \intercal \dagger \Lambda \intercal 

\Bigr) 
,

and note that the right-hand side is an n\times (T + 1) rank 1 matrix. Now, 1\intercal (\bfitI  - \Lambda \intercal \dagger \Lambda \intercal ) \not = 0,
since 1 is not in the column space of \Lambda . Thus, \bfitc = \bfitc \prime .

In either case we have that both \bfitc = \bfitc \prime and \Lambda \prime = \Lambda . From \bfitX = \bfitV \Lambda \intercal + \bfitc 1\intercal , we see that
\bfitV is the unique solution, \bfitV = (\bfitX  - \bfitc 1\intercal )\Lambda \intercal \dagger . This implies that the eigenvectors \bfitv 1, . . . ,\bfitv r
of \bfitA , which correspond to the columns of \bfitV , are unique up to scaling.

5. Comparison of DMD with centering to DMD without centering. In this section, we
show that, for linear systems (dynamics generated by \bfitx j+1 = \bfitA \bfitx j), both DMD with centering
and DMD without centering can be used to compute the modes of \bfitA . In particular, DMD
with and without centering will yield the same modes, except for the background mode. For
DMD without centering, this background mode corresponds to an eigenvalue equal to 1, while
for DMD with centering, this is replaced by an eigenvalue equal to 0 (see Theorem 5.2).

For affine systems (dynamics generated by \bfitx j+1 = \bfitA \bfitx j + \bfitb ), DMD with centering can be
used to extract \bfitb and the modes of \bfitA . In some cases, DMD without centering can also be
used to compute the modes of \bfitA and model the dynamics of the system, but in many cases
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it cannot, most notably if \bfitA is full rank. Here we provide necessary and sufficient conditions
for when DMD will and will not be able to successfully model the dynamics.

We then illustrate these results with synthetic examples in section 5.3 and show that these
results generalize to the case of measurement noise in section 5.4.

5.1. Linear systems without bias. Consider a set of snapshots \bfitx j which satisfy \bfitx j+1 =
\bfitA \bfitx j . From Theorem 4.6, we know that DMD without centering can be used to extract the
nonzero eigenvalues and eigenvectors of \bfitA . We now show that DMD with centering can also
be used to compute the same modes. In particular, if 1 is not an eigenvalue of \bfitA , DMD
with centering and DMD without centering yield the same DMD modes (Theorem 5.2). If
one is an eigenvalue of \bfitA , then DMD with centering and DMD without centering will share
the same modes, except for the background mode. For DMD without centering this mode
corresponds to an eigenvalue equal to one, while for DMD with centering this is replaced with
an eigenvalue equal to zero.

We first prove a useful lemma.

Lemma 5.1. Suppose we have sequential time series such that \bfitx j+1 = \bfitA \bfitx j, and the DMD

problem is well-posed. Then \bfitA has an eigenvalue equal to 1 if and only if 1\intercal \bfitX \dagger 
1\bfitX = 1\intercal .

Proof. Let \bfitX 1 have rank r.1 By Lemma 4.3, we may decompose \bfitX 1 into the product of
two matrices \bfitV and \Lambda which have full column rank:

(5.1) \bfitX 1 =

\left[  | | | 
\bfitv 1 \bfitv 2 \cdot \cdot \cdot \bfitv r
| | | 

\right]  
\underbrace{}  \underbrace{}  

\bfitV 

\left[     
1 \lambda 1 \lambda 2

1 \cdot \cdot \cdot \lambda T - 1
r

1 \lambda 2 \lambda 2
2 \cdot \cdot \cdot \lambda T - 1

2
...

...
... \cdot \cdot \cdot 

...
1 \lambda r \lambda 2

r \cdot \cdot \cdot \lambda T - 1
r

\right]     
\underbrace{}  \underbrace{}  

\bfLambda \intercal 

.

Thus, \bfitV \dagger \bfitV = \bfitI and

\bfitX \dagger 
1\bfitX 1 = \Lambda \dagger \intercal \bfitV \dagger \bfitV \Lambda \intercal = \Lambda \dagger \intercal \Lambda \intercal = \Lambda (\Lambda \intercal \Lambda ) - 1\Lambda \intercal = \Lambda \Lambda \dagger .

First, suppose that 1 is an eigenvalue of\bfitA . Without loss of generality, let \lambda 1 = 1. Consider
the solution \bfitbeta to the equation \Lambda \bfitbeta = 1, or, more explicitly,

(5.2)

\left[       
1 1 \cdot \cdot \cdot 1
1 \lambda 2 \cdot \cdot \cdot \lambda r

1 \lambda 2
2 \cdot \cdot \cdot \lambda 2

r
...

... \cdot \cdot \cdot 
...

1 \lambda T - 1
2 \cdot \cdot \cdot \lambda T - 1

k

\right]       \bfitbeta =

\left[     
1
1
...
1

\right]     .

Clearly, there exists a solution for \bfitbeta , namely \bfitbeta = [1 0 \cdot \cdot \cdot 0]\intercal . Since the DMD problem is
well-posed, the columns of \Lambda are linearly independent. This implies that the solution for

1In general, we define r to be the rank of \bfitA . In many cases, assuming the DMD problem is well-posed,
rank(\bfitA ) = rank(\bfitX 1). However, if \bfitx 1 has a component in the nullspace of \bfitA , then rank(\bfitX 1) = rank(\bfitA ) + 1
and one of the \lambda j 's will be 0.
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\bfitbeta is unique, and hence \bfitbeta = \Lambda \dagger 1 = [1 0 \cdot \cdot \cdot 0]\intercal and \bfitX \dagger 
1\bfitX 11 = \Lambda \Lambda \dagger 1 = 1. Since \bfitX \dagger 

1\bfitX 1

is symmetric, 1\intercal = 1\intercal \bfitX \dagger 
1\bfitX 1. To conclude the proof for this direction we must show that

1\intercal \bfitX \dagger 
1\bfitx T+1 = 1. We can express \bfitx T+1 as

\bfitx T+1 =

\left[  | | | 
\bfitv 1 \bfitv 2 \cdot \cdot \cdot \bfitv r
| | | 

\right]  
\left[     

1
\lambda T
2
...
\lambda T
r

\right]     
\underbrace{}  \underbrace{}  

\bfitlambda T

.

Plugging this in,

1\intercal \bfitX \dagger 
1\bfitx T+1 = 1\intercal \Lambda \dagger \intercal \bfitV \dagger \bfitV \bfitlambda T = 1\intercal \Lambda \dagger \intercal \bfitlambda T = \bfitbeta \intercal \bfitlambda T+1 = 1.

Combining this fact with 1\intercal = 1\intercal \bfitX \dagger 
1\bfitX 1 implies that 1\intercal = 1\intercal \bfitX \dagger 

1\bfitX .
Now suppose 1 is not an eigenvalue of \bfitA . Similar to (5.2), we consider the equation\left[       

1 1 \cdot \cdot \cdot 1
\lambda 1 \lambda 2 \cdot \cdot \cdot \lambda r

\lambda 2
1 \lambda 2

2 \cdot \cdot \cdot \lambda 2
r

...
... \cdot \cdot \cdot 

...

\lambda T - 1
1 \lambda T - 1

2 \cdot \cdot \cdot \lambda T - 1
r

\right]       \bfitbeta =

\left[     
1
1
...
1

\right]     .

In this case, all of the \lambda i's are distinct and not equal to 1. By Lemma 4.2, since T  - 1 \geq r, 1 is
not in the span of the columns of \Lambda , and hence \Lambda \bfitbeta \not = 1 for any value of \bfitbeta . Thus, \Lambda \Lambda \dagger 1 \not = 1
and therefore 1\intercal \bfitX 1\bfitX 

\dagger 
1 \not = 1\intercal .

Theorem 5.2 (DMD with and without centering for linear systems). Suppose we have se-
quential time series snapshots \bfitx 1, . . . ,\bfitx T+1 such that \bfitx j+1 = \bfitA \bfitx j for j = 1, . . . , T . If the

DMD problem is well-posed, then the following hold for \^\bfitA = \bfitX 2\bfitX 
\dagger 
1:

1. If \^\bfitA has an eigenvalue equal to 1, then \=\bfitA = \=\bfitX 2
\=\bfitX \dagger 
1 will have the same eigenvalues

and corresponding eigenvectors as \^\bfitA , except the 1 eigenvalue is replaced with a 0
eigenvalue.

2. If \^\bfitA does not have an eigenvalue equal to 1, then \=\bfitA will have the same eigenvalues
and corresponding eigenvectors as \^\bfitA .

Proof. DMD with centering obtains the centered matrix

\=\bfitA = \=\bfitX 2
\=\bfitX \dagger 
1 = (\bfitX 2  - \bfitmu 21

\intercal )(\bfitX 1  - \bfitmu 11
\intercal )\dagger .(5.3)

For part 1, suppose that \^\bfitA has an eigenvalue equal to 1. Then we have that (\bfitI  - \bfitX \dagger 
1\bfitX 1)

\intercal 1 = 0
by Lemma 5.1. Applying the rank one update formula in [36], which is a generalization of the
Sherman--Morrison--Woodbury formula [44] to the case of noninvertible matrices, we obtain

(5.4) (\bfitX 1  - \bfitmu 11
\intercal )\dagger = \bfitX \dagger 

1

\biggl( 
\bfitI  - \bfitn \bfitn \intercal 

\bfitn \intercal \bfitn 

\biggr) 
,
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where \bfitn = \bfitX \dagger \intercal 
1 1 (see Appendix A). Plugging (5.4) into (5.3) yields

\=\bfitA = (\bfitX 2  - \bfitmu 21
\intercal )\bfitX \dagger 

\bfone 

\biggl( 
\bfitI  - \bfitn \bfitn \intercal 

\bfitn \intercal \bfitn 

\biggr) 
= \bfitX 2\bfitX 

\dagger 
1  - \bfitmu 21

\intercal \bfitX \dagger 
1  - \bfitX 2\bfitX 

\dagger 
1

\bfitn \bfitn \intercal 

\bfitn \intercal \bfitn 
+ \bfitmu 21

\intercal \bfitX \dagger 
1

\bfitn \bfitn \intercal 

\bfitn \intercal \bfitn 

= \bfitX 2\bfitX 
\dagger 
1  - \bfitmu 2\bfitn 

\intercal  - \bfitX 2\bfitX 
\dagger 
1

\bfitn \bfitn \intercal 

\bfitn \intercal \bfitn 
+ \bfitmu 2\bfitn 

\intercal 

= \^\bfitA 

\left(   \bfitI  - \bfitX \dagger \intercal 
1 11\intercal \bfitX \dagger 

1\bigm\| \bigm\| \bigm\| 1\intercal \bfitX \dagger 
1

\bigm\| \bigm\| \bigm\| 2
\right)   .

Again applying Lemma 5.1, we obtain 1\intercal \bfitX \dagger 
1
\^\bfitA = 1\intercal \bfitX \dagger 

1; i.e., 1
\intercal \bfitX \dagger 

1 is a left eigenvector of \^\bfitA 
with eigenvalue 1. By Theorem 2.1 in [11], we conclude that \=\bfitA shares all the same eigenvalues
\^\bfitA , but the eigenvalue of 1 is replaced with 0.

For the eigenvectors, first note that by Lemma 4.3 we can express \bfitX 1, \bfitX 2, and \^\bfitA , in
terms of the eigenvectors of \^\bfitA , as

\bfitX 1 = \bfitV 

\left[     
1 1 1 \cdot \cdot \cdot 1

1 \lambda 1 \lambda 2
1 \cdot \cdot \cdot \lambda T - 1

1
...

...
...

...
1 \lambda r \lambda 2

r \cdot \cdot \cdot \lambda T - 1
r

\right]     , \bfitX 2 = \bfitV 

\left[     
1 1 1 \cdot \cdot \cdot 1
\lambda 1 \lambda 2

1 \lambda 3
1 \cdot \cdot \cdot \lambda T

1
...

...
...

...
\lambda r \lambda 2

r \lambda 3
r \cdot \cdot \cdot \lambda T

r

\right]     ,

and

\^\bfitA = \bfitV 

\left[     
1

\lambda 1

. . .

\lambda r

\right]     \bfitV \dagger .

In this basis, the mean-subtracted data are

\=\bfitX 1 =
\bfitV 

T

\left[     
0 0 0 \cdot \cdot \cdot 0

1 - 
\sum T - 1

i=0 \lambda i
1 \lambda 1  - 

\sum T - 1
i=0 \lambda i

1 \lambda 2
1  - 

\sum T - 1
i=0 \lambda i

1 \cdot \cdot \cdot \lambda T - 1
1  - 

\sum T - 1
i=0 \lambda i

1
...

...
...

...

1 - 
\sum T - 1

i=0 \lambda i
r \lambda r  - 

\sum T - 1
i=0 \lambda i

1 \lambda 2
r  - 

\sum T - 1
i=0 \lambda i

1 \cdot \cdot \cdot \lambda T - 1
r  - 

\sum T - 1
i=0 \lambda i

1

\right]     ,

\=\bfitX 2 =
\bfitV 

T

\left[     
0 0 0 \cdot \cdot \cdot 0

\lambda 1  - 
\sum T

i=1 \lambda 
i
1 \lambda 2

1  - 
\sum T

i=1 \lambda 
i
1 \lambda 3

1  - 
\sum T

i=1 \lambda 
i
1 \cdot \cdot \cdot \lambda T

1  - 
\sum T

i=1 \lambda 
i
1

...
...

...
...

\lambda r  - 
\sum T

i=1 \lambda 
i
r \lambda 2

r  - 
\sum T

i=1 \lambda 
i
1 \lambda 3

r  - 
\sum T

i=1 \lambda 
i
1 \cdot \cdot \cdot \lambda T

r  - 
\sum T

i=1 \lambda 
i
1

\right]     .

We immediately see that

\bfitA \prime = \bfitV 

\left[     
0

\lambda 1

. . .

\lambda r

\right]     \bfitV \dagger 

D
ow

nl
oa

de
d 

08
/3

1/
20

 to
 2

05
.1

75
.1

18
.2

22
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

DMD WITH CENTERING 1937

satisfies \=\bfitX 2 = \bfitA \prime \=\bfitX 1. By Theorem 4.6, the nonzero eigenvalues and corresponding eigenvectors
of \bfitA \prime must be the same as those of \=\bfitA . We conclude that the eigenvectors corresponding to
the eigenvalues \lambda 1, . . . , \lambda r of \^\bfitA and \=\bfitA must be equal up to scaling.

For part 2, suppose 1 is not an eigenvalue of \^\bfitA . Like before, we can explicitly compute
\=\bfitA as a rank one update to \^\bfitA (Appendix A). Since 1 is not an eigenvalue of \^\bfitA , then by

Lemma 5.1, (\bfitI  - \bfitX \dagger 
1\bfitX 1)

\intercal 1 \not = 0. We know that, since the data are linearly consistent, the

solution \^\bfitA to DMD without centering satisfies \bfitX 2 = \^\bfitA \bfitX 1, and thus \bfitX 2(\bfitI  - \bfitX \dagger 
1\bfitX 1) = 0.

Now,

\^\bfitA  - \=\bfitA =
\Bigl( 
\bfitX 2\bfitX 

\dagger 
1  - \=\bfitX 2

\=\bfitX \dagger 
1

\Bigr) 
=

\left(  \bfitX 2\bfitX 
\dagger 
1  - \bfitX 2

\biggl( 
\bfitI  - 11\intercal 

1\intercal 1

\biggr) \left(  \bfitI  - 

\Bigl( 
\bfitI  - \bfitX \dagger 

1\bfitX 1

\Bigr) 
11\intercal 

1\intercal 
\Bigl( 
\bfitI  - \bfitX \dagger 

1\bfitX 1

\Bigr) 
1

\right)  \bfitX \dagger 
1

\right)  
=

\left(  \bfitX 2

\left(  
\Bigl( 
\bfitI  - \bfitX \dagger 

1\bfitX 1

\Bigr) 
11\intercal 

1\intercal 
\Bigl( 
\bfitI  - \bfitX \dagger 

1\bfitX 1

\Bigr) 
1

\right)  \bfitX \dagger 
1

\right)  
= 0.

(5.5)

5.2. Linear systems with bias. We will now illustrate what can go wrong with applying
DMD without centering to data generated by a linear system with bias. Consider the system

\bfitx j+1 =

\biggl[ 
2 0
0 3

\biggr] 
\bfitx j +

\biggl[ 
1
2

\biggr] 
,

with \bfitx 1 = [1, 1]\intercal . This yields data matrices

\bfitX 1 =

\biggl[ 
1 3 7
1 5 17

\biggr] 
and \bfitX 2 =

\biggl[ 
3 7 15
5 17 53

\biggr] 
.

It can easily be shown that these data are linearly inconsistent since \bfitX 2(\bfitI  - \bfitX \dagger 
1\bfitX 1) \not = 0, and

so DMD without centering cannot accurately model the data. In particular, the computed
eigenvalues and eigenvectors will not correspond to those from the affine system, and the
reconstruction of the data using the DMD model will be poor.

However, for some cases DMD without centering may be able to model data generated
by a linear system with bias, i.e., affine dynamics. In Theorem 5.3, we present necessary and
sufficient conditions for when this is possible. These boil down to (1) having ``extra rank""
available to capture the bias with an eigenvector of eigenvalue 1 and (2) a technical condition
on the fixed point \bfitc and the eigenvectors of \bfitA as captured in \bfitV .

Theorem 5.3 (DMD without centering for affine systems). Consider data which satisfy the
recursive affine equation \bfitx j+1 = \bfitA \bfitx j + \bfitb for j = 1, . . . , T , such that the affine problem is
well-posed. Suppose \bfitA does not have an eigenvalue equal to 1, and define the fixed point
\bfitc = (\bfitI  - \bfitA ) - 1 \bfitb . Like in (4.5), we may factor the data \bfitX as

\bfitX =
\bigl[ 
\bfitV \bfitc 

\bigr] \biggl[ \Lambda \intercal 

1\intercal 

\biggr] 
.
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Then there exists an \bfitA \prime such that \bfitx j+1 = \bfitA \prime \bfitx j if and only if \bfitc is not in the span of the
columns of \bfitV .

Corollary 5.4. If \bfitA is full rank and has distinct eigenvalues, then DMD without centering
will not be able to accurately represent the dynamics. In particular, the eigenvalues and
eigenvectors of DMD without centering will not correspond to the eigenvalues and eigenvectors
of \bfitA , and the reconstruction of the data using this linear model will be poor.

Proof. Suppose that \bfitc is not in the span of the columns of \bfitV . We would like to show that

(5.6) \bfitX = \~\bfitV \~\Lambda \intercal ,

where \~\bfitV and \~\Lambda have full column rank and \~\Lambda is a rectangular Vandermonde matrix. Define
\~\bfitV = [\bfitV \bfitc ] and \~\Lambda = [\Lambda 1]. Then \bfitX satisfies (5.6). By assumption, the columns of \~\bfitV are
linearly independent, and, since 1 is not an eigenvalue of \bfitA , by Lemma 4.2, the columns
of \~\Lambda are linearly independent. With this factorization, \bfitX satisfies a linear model \bfitA \prime =
\~\bfitV diag(\lambda 1, . . . , \lambda r, 1) \~\bfitV 

\dagger . By Theorem 4.6, reading off from \~\Lambda , the modes of DMD without
centering will be the same eigenvalues and corresponding eigenvectors of DMD with centering
with an additional eigenvalue equal to 1.

Now suppose that \bfitc is in the span of the columns of \bfitV . To show that a linear system
cannot model the data, we will use proof by contradiction. Suppose that we can express

[\bfitV \bfitc ][\Lambda 1]\intercal = \~\bfitV \~\Lambda \intercal ,

where \~\bfitV and \~\Lambda have full column rank (Lemma 4.3). Since rank([\bfitV \bfitc ]) < rank([\Lambda 1]), this
requires that rank( \~\Lambda ) < rank([\Lambda 1]).

For a Vandermonde matrix \bfitM , let \sigma (\bfitM ) denote its ``spectrum,"" i.e., the eigenvalues that
generate the columns, so that \sigma (\Lambda ) = \{ \lambda 1, . . . , \lambda r\} . We have three cases.

Case 1: \sigma ( \~\Lambda ) is a proper subset of \sigma ([\Lambda 1]).
In this case, we can partition the columns of [\Lambda 1] to form two Vandermonde matrices \~\Lambda and
\Lambda \prime , where the spectrum of \sigma (\Lambda \prime ) = \sigma ([\Lambda 1]) \setminus \sigma ( \~\Lambda ). Employing the same partition on the
columns of [\bfitV \bfitc ], we can form matrices \bfitV 1 and \bfitV 2, such that

(5.7)
\bigl[ 
\bfitV 1 \bfitV 2

\bigr] \biggl[ \~\Lambda \intercal 

\Lambda \prime \intercal 

\biggr] 
= \~\bfitV \~\Lambda \intercal .

Consider the solution to

\bfitB 

\biggl[ 
\~\Lambda \intercal 

\Lambda \prime \intercal 

\biggr] 
= \~\Lambda \intercal .

By assumption, the columns of [ \~\Lambda \Lambda \prime ] are linearly independent, and so there is a unique

solution \bfitB = \~\Lambda \intercal 
\bigl[ \~\bfLambda \intercal 

\bfLambda \prime \intercal 

\bigr] \dagger 
= [\bfitI 0]. Multiplying both sides of (5.7) on the right by

\bigl[ \~\bfLambda \intercal 

\bfLambda \prime \intercal 

\bigr] \dagger 
, we

find \bigl[ 
\bfitV 1 \bfitV 2

\bigr] 
= \~\bfitV \~\Lambda \intercal 

\biggl[ 
\~\Lambda \intercal 

\Lambda \prime \intercal 

\biggr] \dagger 
=
\bigl[ 
\~\bfitV 0

\bigr] 
.

However, \bfitV 2 cannot be 0, since it comes from a partition of the nonzero columns of [\bfitV \bfitc ].
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Case 2: \sigma ( \~\Lambda ) = \sigma ([\Lambda 1]).
The two spectra cannot be equal, since this would imply that rank( \~\Lambda ) = rank([\Lambda 1]).

Case 3: There exists some \lambda \in \sigma ( \~\Lambda ) with \lambda \not \in \sigma ([\Lambda 1]).
Therefore, \~\Lambda contains a column which is not in the column space of [\Lambda 1]. This means that
there is a column in \~\Lambda which is linearly independent from the columns of [\Lambda 1]. Thus, there
does not exist a linear combination \bfitC such that

\bfitC 

\biggl[ 
\Lambda \intercal 

1\intercal 

\biggr] 
= \~\bfitV \~\Lambda \intercal ,

which is a contradiction.

5.3. Synthetic examples. To review our results so far, we compare the eigenvalue spectra
from DMD with centering and DMD without centering for four sets of measurements of affine
systems \bfitx j+1 = \bfitA \bfitx j + \bfitb . The results are shown in Figure 2. The two top spectra correspond
to data with n < T , while the bottom two correspond to n > T .

For n < T , if \bfitA is low rank (r < n), then DMD without centering has the same spectra as
DMD with centering, but with an additional eigenvalue equal to 1. If \bfitA is full rank (r = n),
then DMD with centering computes the correct modes. However, by Corollary 5.4, DMD
without centering cannot accommodate the affine term and yields incorrect eigenvalues and a

poor one step reconstruction of
\bigm\| \bigm\| \bigm\| \bfitX 2  - \^\bfitA \bfitX 1

\bigm\| \bigm\| \bigm\| = 0.019.

For n > T with \bfitA low rank, DMD without centering has the same spectrum as DMD
with centering, but with an additional eigenvalue equal to 1. If r > T , by Theorem 4.6 the
system is undersampled. Therefore, the DMD problem is not well-posed, and the modes of
\bfitA are not unique. Consequently, the DMD modes, for both DMD with centering and DMD
without centering, do not equal the true modes of \bfitA . That being said, since the data are
linearly consistent, all of the models are able to reconstruct the data.

5.4. The effects of noise. In Theorem 5.2 we showed that, for a linear system, DMD with
centering and DMD without centering will yield the same modes, except that the constant
mode without centering is replaced with a zero mode. However, one of the key assumptions
in our proofs is that there exists \bfitA , so that \bfitx j+1 = \bfitA \bfitx j . For real data with measurement
noise, this assumption will not hold. We find empirically that these predictions do hold true,
with uncertainty on the order of the noise level.

We simulated data \bfitY = \bfitX + \eta \bfitZ , where the elements of \bfitZ are from a standard normal
distribution, and performed DMD. We performed this for 500 instantiations of \bfitZ for each of
20 values of \eta ranging uniformly on a logarithmic scale from 10 - 9 to 1. Values of n = 10,
T = 30, and r = 7 were used. For both DMD with centering and DMD without centering, we
computed the sum of the distances from the computed eigenvalues of \=\bfitA and \^\bfitA to the nearest
true eigenvalue of \bfitA and then reported the median.

Our results are shown in Figure 3. The eigenvalue distances, shown at the top, for \^\bfitA and
\=\bfitA scale linearly with \eta . These distances are very close for these two methods. Note that,
when computing the sums for DMD without centering, we exclude the eigenvalue closest to
one to establish a fairer comparison between these two methods.

For a specific example, at the bottom of Figure 3 we plot the eigenvalues computed using
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1940 HIRSH, HARRIS, KUTZ, AND BRUNTON

(a)

(c)

(b)

(d)

Figure 2. Comparison of the eigenvalues from DMD with centering (green) and DMD without centering
(orange) to the true eigenvalues (black) of \bfitA for four different affine systems \bfitx j+1 = \bfitA \bfitx j + \bfitb . (a) n < T and
\bfitA is low rank. DMD with and without centering both yield the eigenvalues of \bfitA , except DMD with centering
has an extra eigenvalue of 1, corresponding to the background mode. (b) n < T and \bfitA is full rank. DMD with
centering yields the true eigenvalues of \bfitA while DMD without centering does not. (c) n > T and \bfitA is low rank.
This yields the same result as (a). (d) Since T < r, the DMD problem is not well-posed and neither DMD with
centering nor DMD without centering yields the eigenvalues of \bfitA .

these two methods for \eta = 0.005 over 100 realizations of the noise. The black crosses show
the true eigenvalues. As expected, the deviations of the eigenvalues from the true values are
roughly the same. Note the presence of the additional eigenvalue equal to 1 for DMD without
centering.

6. DMD with centering is not a temporal discrete Fourier transform. Similar to DMD,
the temporal discrete Fourier transform (temporal DFT) can be used to decompose the times
series data \bfitx 1, . . .\bfitx T+1 into linear combinations of modes with exponential time dependence.
In particular, the temporal DFT is defined as [9, 17]

\^\bfitx j :=

\Biggl\{ 
1

T + 1

T+1\sum 
k=1

exp

\biggl( 
 - 2\pi i(j  - 1)(k  - 1)

T + 1

\biggr) 
\bfitx k

\Biggr\} 
,
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(a)

(b)

Figure 3. Comparison of DMD with centering and DMD without centering in the presence of measurement
noise. (a) For fixed \bfitA , we compute the sum of the distances from the computed eigenvalues of \bfitA to the nearest
true eigenvalue. For both methods, the sum scales linearly with the noise level. (b) For fixed noise level 0.005,
we plot the eigenvalues of \bfitA computed using both methods for 100 instantiations of noise. The fluctuations of
the eigenvalues from the true values (black crosses) are roughly the same for both methods.

with inverse transform

(6.1) \bfitx \prime 
k :=

\Biggl\{ 
T+1\sum 
k=1

exp

\biggl( 
2\pi i(j  - 1)(k  - 1)

T + 1
\^\bfitx k

\biggr) \Biggr\} 
.

In [8], Chen, Tu, and Rowley argue that when subtracting the mean \bfitmu = 1
T+1

\sum T+1
j=1 \bfitx j the

eigenvalues lj of the companion matrix \bfitC are independent of the data:

lj = exp

\biggl( 
2\pi ij

T + 1

\biggr) 
, j = 1, . . . , T + 1.

and the eigenvectors \bfitw j are given by

\bfitx k =
T+1\sum 
j=2

exp

\biggl( 
2\pi i(j  - 1)(k  - 1)

T + 1

\biggr) 
\bfitw j .
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1942 HIRSH, HARRIS, KUTZ, AND BRUNTON

Comparing this to (6.1), we see that the eigenvectors of the companion matrix correspond to
those given by the temporal DFT. Most significantly, this has the unintended consequence of
restricting the eigenvalues to be roots of unity.

It is important to note that this argument is based on (1) the companion matrix approach
and (2) the fact that the companion matrix is unique and hence the data matrix \bfitX 1  - \bfitmu 1\intercal 

has full rank. We note that if the data is not full rank, then the companion matrix approach
yields different modes than SVD-based DMD [8, 42].

Clearly, if we subtract the mean \bfitmu 1 from \bfitX 1, then \bfitX 1  - \bfitmu 11
\intercal will be low rank and

therefore have linearly dependent columns. Hence, the argument above does not apply to this
case. In particular, we do not expect the DMD with centering method (3.4) to be equivalent
to the companion matrix approach \bfitX 1  - \bfitmu 11

\intercal or equivalent to the DFT.
If we subtract the overall mean \bfitmu from the data as in [8], if \bfitX 1 is low rank, then the

argument above does not apply. Moreover, even if \bfitX 1 is full rank, if there is a stationary
mode, then \bfitX 1 - \bfitmu 1\intercal will be low rank. This is proven in Proposition 6.1 below. In the case of
low-rank data or a nonzero stationary mode, if we subtract \bfitmu , the SVD-based approach will
not equal the companion matrix. Furthermore, the assumptions in [8] are not satisfied, and
neither the SVD-based approach nor the companion matrix approach is expected to equal the
DFT. We have found it not to be equal to the DFT in all experiments we have considered for
these cases.

Proposition 6.1. Suppose we have sequential time series such that \bfitx j+1 = \bfitA \bfitx j which are
used to define the matrices \bfitX and \bfitX 1 as in (2.3) and (4.3). If

1. the DMD problem is well-posed,
2. \^\bfitA = \bfitX 2\bfitX 

\dagger 
1 has eigenvalue 1, and

3. \bfitX has nonzero mean \bfitmu = 1
T+1\bfitX 1 \not = 0,

then rank(\bfitX 1  - \bfitmu 1\intercal ) \leq rank(\bfitX 1) - 1.

Proof. To prove that \bfitX 1  - \bfitmu 1\intercal is rank deficient, we will show that there exists a nonzero
vector \bfitv which is in the nullspace of \bfitX 1  - \bfitmu 1\intercal , but not in the nullspace of \bfitX 1.

First, we need to show that range(\bfitX 2) \subseteq range(\bfitX 1). To see this, we only need to consider
the case where range(\bfitX 2) \not = range(\bfitX 1). Then, since the DMD problem is well-posed, T \geq r+
1. Thus, \bfitX 1 contains at least r linearly independent vectors which are in the range of \^\bfitA . Thus,
range( \^\bfitA ) \subseteq range(\bfitX 1), and since \bfitX 2 = \^\bfitA \bfitX 1, then range(\bfitX 2) \subseteq range( \^\bfitA ) \subseteq range(\bfitX 1).

Since range(\bfitX 2) \subseteq range(\bfitX 1), there exists \bfitc \in \BbbR n - 1 such that \bfitX 1\bfitc = \bfitx T+1. One possible

solution to this is \bfitc = \bfitX \dagger 
1\bfitx T+1. Define \bfitalpha =

\bfone +\bfitX \dagger 
1\bfitx T+1

T+1 . By definition,

0 \not = \bfitmu =
1

T + 1
\bfitX 1

=
1

T + 1
(\bfitX 11+ \bfitx T+1)

=
1

T + 1
\bfitX 1 (1+ \bfitc )

= \bfitX 1\bfitalpha .

Thus, \bfitalpha is not in the nullspace of \bfitX 1 and therefore cannot be 0. By Lemma 5.1, since \^\bfitA has
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eigenvalue 1, then 1\intercal \bfitX \dagger 
1\bfitx T+1 = 1\intercal \bfitc = 1. Thus,

(\bfitX 1  - \bfitmu 1\intercal )\bfitalpha = \bfitX 1

\biggl( 
\bfitI  - 1

T + 1
(1+ \bfitc )1\intercal 

\biggr) 
(1+ \bfitc )

T + 1

= \bfitX 1
(1+ \bfitc )

T + 1
 - \bfitX 1

1

T + 1
(1+ \bfitc )1\intercal 

(1+ \bfitc )

T + 1

= \bfitX 1
(1+ \bfitc )

T + 1
 - \bfitX 1

(1+ \bfitc )

T + 1

= 0.

In conclusion, the dimension of the null space of the centered data (\bfitX 1 - \bfitmu 1\intercal ) must be greater
than the dimension of the null space of the uncentered data (\bfitX 1), and the centered data must
have a lower rank than the uncentered data.

Remark 6.2. Even in the case where the system has measurement noise, \bfitX 1  - \bfitmu 1\intercal is
effectively rank deficient. Thus, the companion matrix modes are not the DMD modes even
if the data is mean-subtracted using \bfitmu .

To illustrate this point we generate data for an affine system \bfitx j+1 = \bfitA \bfitx j + \bfitb (3.1)
with n = 10, T = 7, and r = 5. In Figure 4, we plot the true modes (crosses), the spectrum
computed with DMD with centering, and the spectrum computed using the companion matrix
on data with the total mean subtracted. We see that DMD with centering extracts the correct
modes. However, the companion matrix approach does not. Since the data \bfitX 1  - \bfitmu 1\intercal is low
rank, the eigenvalues of the companion matrix are not the roots of unity. In addition, note
that the companion matrix has seven nonzero eigenvalues even though \bfitA has only five. Next,
we add some Gaussian distributed measurement noise with zero mean and standard deviation
0.001. Like the noiseless case, DMD with centering extracts the correct eigenvalues. Since the
data are full rank, the companion matrix approach yields a temporal DFT. However, since
the data has low effective rank, the eigenvalues of the companion matrix do not equal the
eigenvalues of \bfitA .

7. Extracting arbitrary frequencies. By subtracting the means of \bfitX 1 and \bfitX 2 individu-
ally, we have shown by Theorem 5.2 that we can successfully extract the dynamics about a
background mode (corresponding to a DMD mode with eigenvalue equal to 1). We generalize
this result to modes with fixed frequencies that correspond to known eigenvalues other than
1. As a concrete example, electrical recordings taken in the presence of an alternating current
power source are often corrupted with a ``background"" signal at a fixed frequency (60 Hz in
most countries). This line noise corresponds to a mode with a precisely known eigenvalue that
we want to subtract from the measurements.

To subtract a mode of known frequency, note that in (3.1) the eigenvalue of 1 comes in
through the decision to use 1\intercal . By adding this term we enforce that

(7.1) 1\intercal =
\bigl[ 
1 1 \cdot \cdot \cdot 1

\bigr] 
appears in the rowspace of the data. We remove this mode by subtracting the mean from the
data or equivalently applying the orthogonal projection,

(7.2) \bfitI  - 11\intercal 

1\intercal 1
,
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(a) (b)

Figure 4. Comparison of performance of DMD with centering and the companion matrix approach on
mean-subtracted data. (a) DMD modes (green) match with the true modes (black crosses). Since the total
mean-subtracted data \bfitX 1 - \bfitmu \bfone \intercal is low rank, the companion matrix eigenvalues do not equal the true eigenvalues.
(b) Same system as (a) but with added measurement noise. DMD with centering yields the correct eigenvalues.
Since the data is full rank, the companion matrix eigenvalues equal the roots of unity. However, since the data
has low effective rank, these modes do not equal the true modes of the system.

to \bfitX 1 and \bfitX 2.
If we know that another eigenvalue \lambda exists in the data, then we simply replace (7.1) with

\bfitlambda \intercal =
\bigl[ 
1 \lambda \lambda 2 \lambda 3 \cdot \cdot \cdot \lambda T - 1

\bigr] 
.

Thus, (3.1) becomes

(7.3) \bfitX 2 = \bfitA \bfitX 1 + \bfitb \bfitlambda \intercal .

Multiplying both sides by \bfitlambda \intercal \dagger = \bfitlambda \ast 

\bfitlambda \intercal \bfitlambda \ast yields

\bfitX 2
\bfitlambda \ast 

\bfitlambda T \ast \bfitlambda 
= \bfitb 

\bfitlambda \intercal \bfitlambda \ast 

\bfitlambda T \ast \bfitlambda 
+\bfitA \bfitX 1

\bfitlambda \ast 

\bfitlambda T \ast \bfitlambda 
,

\bfitb = \bfitX 2
\bfitlambda \ast 

\bfitlambda T \ast \bfitlambda 
 - \bfitA \bfitX 1

\bfitlambda \ast 

\bfitlambda T \ast \bfitlambda 
.

Plugging this into (7.3), we obtain

\bfitA \bfitX 1

\biggl( 
\bfitI  - \bfitlambda \ast \bfitlambda \intercal 

\bfitlambda \intercal \bfitlambda \ast 

\biggr) 
= \bfitX 2

\biggl( 
\bfitI  - \bfitlambda \ast \bfitlambda \intercal 

\bfitlambda \intercal \bfitlambda \ast 

\biggr) 
.

Thus, solving (7.3) is equivalent to applying the orthogonal projection, \bfitI  - \bfitlambda \ast \bfitlambda \intercal 

\bfitlambda \intercal \bfitlambda \ast to the data.
If there are multiple known distinct eigenvalues \lambda 1, . . . , \lambda k, then applying the same proce-

dure we construct the matrix

\Lambda \intercal =

\left[     
\lambda 1 \lambda 2

1 \lambda 3
1 \cdot \cdot \cdot \lambda \intercal 

1

\lambda 1 \lambda 2
1 \lambda 3

1 \cdot \cdot \cdot \lambda T
1

...
...

...
. . .

...
\lambda k \lambda 2

k \lambda 3
k \cdot \cdot \cdot \lambda T

k

\right]     
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(a) (b)

Figure 5. Comparison of DMD with fixed frequency subtraction versus ordinary DMD. Data was generated
as in (7.5), where \bfitA has six nonzero eigenvalues with one fixed to be  - i. (a) Eigenvalues computed using DMD
with fixed frequency subtraction (green) compared to true eigenvalues of \bfitA . (b) DMD modes computed without a
fixed eigenvalue (orange) compared to true eigenvalues of \bfitA . DMD without fixed frequency subtraction contains
the additional eigenvalue equal to  - i.

and assume that the data satisfies

(7.4) \bfitX 2 = \bfitA \bfitX 1 +\bfitB \Lambda \intercal .

In the case that k < T , since \Lambda is a Vandermonde matrix, it has full column rank (Lemma

4.2), and thus \Lambda \dagger \Lambda = \bfitI . Multiplying (7.4) by \Lambda \intercal \dagger and rearranging terms, we get

\bfitB = \bfitX 2\Lambda 
\intercal \dagger  - \bfitA \bfitX 1\Lambda 

\intercal \dagger .

Plugging this into (7.4) yields

\bfitA \bfitX 1

\Bigl( 
\bfitI  - \Lambda \intercal \dagger \Lambda \intercal 

\Bigr) 
= \bfitX 2

\Bigl( 
\bfitI  - \Lambda \intercal \dagger \Lambda \intercal 

\Bigr) 
.

So, solving (7.4) is equivalent to DMD after applying the orthogonal projection \bfitI  - \Lambda \intercal \dagger \Lambda \intercal to
the data. As an example, we generate data with samples which satisfy

(7.5) \bfitx j+1 = \bfitA \bfitx j + \bfitb \lambda j - 1 for j = 1, . . . , T + 1.

We choose n = 10, T = 9, r = 5, and \lambda =  - i. The eigenvalues of \bfitA (black crosses) are
shown in Figure 5 alongside the eigenvalues computed using DMD without fixing an eigenvalue
(orange) and DMD with a fixed eigenvalue (green). As expected, DMD with a fixed eigenvalue
extracts the eigenvalues of \bfitA , while DMD without a fixed eigenvalue includes an additional
eigenvalue with value  - i.

8. Examples. We demonstrate DMD with centering on three nonlinear examples, includ-
ing one synthetic example and two real-world datasets. For the Lorenz system, section 8.1
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shows that DMD with centering improves the model of the dynamics, especially in the pres-
ence of measurement noise. Section 8.2 describes the surveillance video example, where the
data is effectively low rank; DMD with and without centering extract the same foreground and
background modes, as detailed in section 5. From these two examples we see that DMD with
centering performs at least as well as, if not better than, DMD without centering. Finally,
section 8.3 shows extraction of modes at arbitrary frequencies (section 7) using an example of
brain activity recordings contaminated by 60 Hz line noise.

8.1. Lorenz system. As an example, we analyze the Lorenz (1963) system [30] which is
defined by the set of differential equations

\.x1 = \sigma (x2  - x1)

\.x2 = x1 (\rho  - x3) - x2

\.x3 = x1x2  - \beta x3.

These equations appear in a variety of systems, including fluid dynamics [29], lasers [54], and
chemical reactions [12]. This system is nonlinear, and thus the corresponding data matrix
\bfitX \in \BbbR 3\times T+1 has linearly independent rows.

For this analysis, we will focus on applying DMD to a short trajectory that spirals outward
from the unstable nonzero fixed point (

\sqrt{} 
\beta (\rho  - 1),

\sqrt{} 
\beta (\rho  - 1), \rho  - 1). We choose to use the

common values \sigma = 10, \rho = 28, and \beta = 8/3. We simulate 4800 timepoints using the
standard Runge--Kutta 4th-order method with fixed timestep 0.001 and initial condition \bfitx 1 =
[6.7673, 6.1253, 25.8706].

In Figure 6 we plot the trajectory along with the reconstructed trajectories (forecasts from
the initial time) using DMD with centering and DMD without centering. The corresponding
eigenvalues from these two methods are shown on the right. DMD with centering and DMD
without centering have different eigenvalues in this case. However, both methods give similar
reconstructions. Note that DMD has an eigenvalue very close to 1, which indicates that there
is a fixed point or nonzero mean in the data.

Next we add Gaussian measurement noise with variance 0.032, which is quite small relative
to the variable scales. It is well known that noise shrinks DMD eigenvalues towards the origin
[4, 10, 20]. For DMD with centering, even though the eigenvalues shrink towards the origin,
the reconstruction is still centered about the fixed point. In addition, since two of the DMD
with centering eigenvalues remain outside of the unit circle, the reconstructions have the same
growing trend as the simulation. However, for DMD without centering all of the eigenvalues
fall within the unit circle, which causes the reconstruction to decay to the origin. So, we
conclude that not centering the data can result in drastically different forecasts and estimates
of stability.

8.2. Background subtraction for video surveillance. Next we analyze an application to
video surveillance. Here, we focus on one objective, namely foreground/background separation
in video. In particular, we would like to split the data into two pieces: a slowly varying,
highly correlated background and a foreground containing moving objects of interest. Several
techniques have been developed to address this objective [47, 31, 19, 7]. In [16], Grosek and
Kutz show that when DMD is applied to videos with static backgrounds, one of the DMD
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Figure 6. Comparison of performance of DMD with and without centering using Lorenz (1963) attractor
data. Top left: Reconstruction of z plotted against reconstruction of y for the two methods. Top center:
Reconstruction of x, y, and z as a function of t individually using different methods. Both methods produce
similar reconstructions. Top right: Eigenvalue spectra for DMD with and without centering. Bottom row:
Same as top row except simulation has added Gaussian measurement noise. Note that all of the eigenvalues
for DMD without centering have magnitude less than 1 and decay to 0, causing the reconstructed trajectory to
decay to 0. However, some of the DMD with centering modes have magnitude greater than 1, yielding a better
reconstruction. One eigenvalue equal to 0.8866 is not shown for DMD with centering.

modes typically has an eigenvalue close to 1. This mode is a good approximation to the
background, and consequently the difference in the data and this mode is an estimate for the
foreground. Here we illustrate the implications of Theorem 5.2 and show that DMD with
centering yields the same eigenvalues and eigenvectors as DMD without centering, except the
eigenvalue of 1 is replaced with an eigenvalue equal to 0. Using DMD with centering, we show
that the background mode can be computed using the means \bfitmu 1, \bfitmu 2, and \bfitA .

For this type of data, we expect the video to be approximately low rank. Hence, the
foreground from exact DMD should be approximately equal to the mean-subtracted data. In
addition, we assume the background corresponds to a nonzero fixed point \bfitc , where

\bfitX 2  - \bfitc 1\intercal = \=\bfitA (\bfitX 1  - \bfitc 1\intercal ).

Taking the difference between this equation and the equation for DMD with centering,

\bfitX 2  - \bfitmu 21
\intercal = \=\bfitA (\bfitX 1  - \bfitmu 11

\intercal ) ,

we get
\bfitc  - \=\bfitA \bfitc = \bfitmu 2  - \=\bfitA \bfitmu 1,
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t

(a) (c) (e)

(b) (d) (f)

Figure 7. (a) Sample frames from video of traffic. (b) Overall mean \mu of video. (c) Eigenvalues of modes
computed using DMD and (d) static mode corresponding to eigenvalue closest to 1. (e) Eigenvalues of modes
computed using DMD with centering and (f) static mode corresponding to fixed point. Note that the spectra
for these two methods are nearly identical with the exception of the eigenvalue at 1 corresponding to the static
mode/fixed point.

and hence

\bfitc = (\bfitI  - \=\bfitA ) - 1(\bfitmu 2  - \=\bfitA \bfitmu 1).

Note that \bfitI  - \=\bfitA is invertible since \=\bfitA does not have an eigenvalue equal to 1 according to
Theorem 5.2. In general, \bfitA may be prohibitively large to compute \bfitc in (8.2). We note that
this computation may be performed in the smaller r-dimensional space (see Appendix B).

We apply these methods to surveillance video of highway traffic from the CDNET dataset
[53]. The video has a height and width of 120 \times 160 pixels and consists of 41 frames. In
this case, the foreground is the cars, and the background is the grass, road, trees, etc. In
Figure 7 we show a sample frame, the stationary mode from DMD without centering, the
fixed point \bfitc from DMD with centering, and the overall mean of the data. The stationary
mode and fixed point are visually identical but not equal to the overall mean of the data.
As we increase the number of frames in this analysis, the stationary mode and fixed point
converge to the overall mean. We choose a short number of frames for this study to illustrate
the difference between these quantities. In practice, a larger number of frames will yield better
foreground/background separation. Additionally, as predicted by Theorem 5.2, the spectra for
DMD with and without centering are nearly identical except for the presence of the additional
eigenvalue equal to 1 for DMD without centering.
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8.3. Fixed frequency subtraction for brain activity recordings. As a final example, we
study an application of section 7 to brain activity recordings and illustrate how fixed frequency
subtraction naturally fits within the DMD framework. In particular, we study intracranial
electrocorticography (ECoG) measurements from electrodes placed on a human brain surface
[52]. The data we use contain 64 channels of measurements and are sampled for a duration
of 5 seconds with a frequency of 1000 Hz.

One common source of signal pollution is 60 Hz power line hum, which results from the
AC current in power lines [5, 28]. To illustrate the results of section 7, we may apply our
method of fixed frequency subtraction to denoise the signal. In particular, we multiply \bfitX 1

and \bfitX 2 by the orthogonal projection \bfitI  - \bfitlambda \ast \bfitlambda \intercal 

\bfitlambda \intercal \bfitlambda \ast and then apply DMD to these data matrices.
\bfitlambda in this case is generated by an eigenvalue which corresponds to a frequency of 60 Hz. In the
top left of Figure 8, we plot the subset of these channels. The corresponding power spectra
computed using the temporal DFT and DMD are shown in the middle left and bottom left
plots, respectively. As expected, there is a distinct peak near 60 Hz in both of these plots.
On the right we show the corresponding plots after applying the fixed frequency subtraction
at 60 Hz. In the power spectrum we see that the peak near 60 Hz is suppressed by an order of
magnitude. In addition, the mode near 60 Hz in the DMD spectrum is completely removed.
Surprisingly, even though the original mode is not at exactly 60 Hz, frequency subtraction is
able to remove it. As an alternative method, a notch filter can also be used to remove known
frequencies and is the recommended method in practice, since a well-designed filter is less
likely to introduce artifacts. In general, there may be additional frequencies corresponding to
higher harmonics which we may choose to remove. The results of section 7 may also be used
in this case.

9. Discussions. In this paper, we have proposed mean-subtraction as a natural and com-
putationally efficient preprocessing step when performing DMD. We have shown that DMD
on mean-subtracted data is equivalent to an additional affine term in the DMD framework,
but is not equivalent to a temporal discrete Fourier transform (temporal DFT). In addition,
we showed that, in a special subset of cases, DMD without centering extracts the same spec-
tra as DMD with centering. However, in the case where the data are full rank, DMD with
centering can extract the underlying dynamics even when DMD without centering cannot.
By thinking of centering the data as subtracting a zero-frequency mode, we generalized this
result to extracting nonzero, known frequencies in the data. Finally, we illustrated DMD with
centering on three real examples with nonlinear dynamics, namely a trajectory of the Lorenz
system, a surveillance video, and brain recordings.

Many of the theorems in this work have depended on the assumption of sequential time
series sampled at a fixed frequency. In particular, the uniqueness of the DMD modes (Theo-
rem 4.6) is based on this assumption. However, exact DMD has been shown to successfully
extract modes from data that is not sequential. One potential starting point is the theory of
exponential Vandermonde matrices [39, 57]. It remains to be demonstrated that the modes
extracted for nonsequential times data by exact DMD, or similar methods such as optimized
DMD, are well-posed and unique. Furthermore, future work remains to more thoroughly
explore the effects of noise on the DMD estimator and obtain a fully statistical theory.

Our analysis in this paper has focused on computing DMD by what is known as the
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Figure 8. Application of fixed frequency subtraction to brain activity recordings. Top left: Raw voltage
signals from subset of channels. Center left: Corresponding DFT power spectrum. Bottom left: Power spectrum
computed using DMD. Right: Same as left column after fixed frequency of 60Hz has been subtracted.

(SVD-based) exact DMD algorithm [49]. There exist many other algorithms for computing
the DMD, including forward/backward DMD [10], total least squares DMD [20], and opti-
mized DMD [3]. Although we suggest that data centering is generally advantageous, the
consequences of centering remain to be explicitly characterized when using these other algo-
rithms.

Appendix A. Rank one update. Here we will derive (5.3) and (5.5). Namely we will show
that if \bfitX 2 = \bfitA \bfitX 1, then

(A.1) \=\bfitX \dagger 
1 =

\left\{     
\bfitX \dagger 

1

\bigl( 
\bfitI  - \bfitn \bfitn \intercal 

\bfitn \intercal \bfitn 

\bigr) 
if (\bfitI  - \bfitX \dagger 

1\bfitX 1)
\intercal 1 = 0,\Biggl( 

\bfitI  - 
\Bigl( 
\bfitI  - \bfitX \dagger 

1\bfitX 1

\Bigr) 
\bfone \bfone \intercal 

\bfone \intercal 
\Bigl( 
\bfitI  - \bfitX \dagger 

1\bfitX 1

\Bigr) 
\bfone 

\Biggr) 
\bfitX \dagger 

1 otherwise,

where \bfitn = \bfitX \dagger \intercal 
1 1. To derive this we use the rank one update formula (3.2.7) from [36] to

compute \=\bfitX \dagger 
1 = (\bfitX 1  - \bfitmu 11

\intercal )\dagger .
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First, let us assume that (\bfitI  - \bfitX \dagger 
1\bfitX 1)1 = 0. Letting A = \bfitX 1, c =  - \bfitmu 1, and d = 1, we

have

\beta = 1 - 1\intercal \bfitX \dagger 
1\bfitmu 1 = 1 - 1\intercal \bfitX \dagger 

1\bfitX 11

1\intercal 1
= 0,

\bfitw =  - (\bfitI  - \bfitX 1\bfitX 
\dagger 
1)
\bfitX 11

1\intercal 1
= 0,

\bfitm = (\bfitI  - \bfitX \dagger 
1\bfitX 1)

\intercal 1 =
\Bigl( 
1\intercal  - 1\intercal \bfitX \dagger 

1\bfitX 1

\Bigr) \intercal 
= 0,

\bfitv =  - \bfitX \dagger 
1\bfitmu 1 =  - \bfitX \dagger 

1

\bfitX 11

1\intercal 1
=  - 1

1\intercal 1
,

\bfitn = \bfitX \dagger \intercal 
1 1.

Note that \| \bfitv \| 2 = 1
\bfone \intercal \bfone . Since \beta = \| \bfitm \| = \| \bfitw \| = 0, we are in Case 6 and the pseudoinverse is

given by

\=\bfitX \dagger 
1 = \bfitX \dagger 

1  - 
1

\| \bfitv \| 2
\bfitv \bfitv \intercal \bfitX \dagger 

1  - 
1

\| \bfitn \| 2
\bfitX \dagger 

1\bfitn \bfitn 
\intercal +

\bfitv \intercal \bfitX \dagger 
1\bfitn 

\| \bfitv \| 2 \| \bfitn \| 2
\bfitv \bfitn \intercal .

Noting that in the first term
\bfitv \intercal \bfitX \dagger 

1

\| \bfitv \| 2 = \bfitn \intercal and in the third term \bfitv \intercal \bfitX \dagger 
1\bfitn =

\bfone \intercal \bfitX \dagger 
1\bfitX 

\dagger \intercal 
1 \bfone 

\bfone \intercal \bfone =

\| \bfitn \| 2 \| \bfitv \| 2, we see that the first and third terms equal  - \bfitv \bfitn \intercal and \bfitv \bfitn \intercal . These cancel, yielding
the first case of (A.1). Thus, by Theorem 2.1 in [11], \^\bfitA and \=\bfitA share all the same eigenvalues
and eigenvectors except the eigenvalue of \^\bfitA equal to 1 which becomes

1 - \bfitn \intercal \bfitX 2\bfitX 
\dagger 
1\bfitn 

\| \bfitn \| 2
= 1 - \bfitn \intercal \^\bfitA \bfitn 

\| \bfitn \| 2
= 1 - \bfitn \intercal \bfitn 

\| \bfitn \| 2
= 0.

Now, let us assume that 1\intercal (\bfitI  - \bfitX \dagger 
1\bfitX 1) \not = 0. This corresponds to Case 3 in [36].

\bfitw =  - 
\Bigl( 
\bfitI  - \bfitX 1\bfitX 

\dagger 
1

\Bigr) \bfitX 11

1\intercal 1
= 0,

\bfitm =
\Bigl( 
\bfitI  - \bfitX \dagger 

1\bfitX 1

\Bigr) \intercal 
1 \not = 0,

\beta = 1 - 1\intercal \bfitX \dagger 
1\bfitX 11

1\intercal 1
=

\| \bfitm \| 2

1\intercal 1
\not = 0,

\bfitv =  - \bfitX \dagger 
1\bfitX 11

1\intercal 1
,

\bfitn = \bfitX \dagger \intercal 
1 1,

\=\bfitX \dagger 
1 = \bfitX \dagger 

1 +
1

\beta 
\bfitm \bfitv \intercal \bfitX \dagger 

1  - 
\beta 

\| \bfitv \| 2 \| \bfitm \| 2 + | \beta | 2

\Biggl( 
\| \bfitv \| 2

\beta 
\bfitm + \bfitv 

\Biggr) \Biggl( 
\| \bfitm \| 2

\beta 

\Bigl( 
\bfitX \dagger 

1

\Bigr) \intercal 
\bfitv + \bfitn 

\Biggr) \intercal 

.

Now
\| \bfitm \| 2

\beta 

\Bigl( 
\bfitX \dagger 

1

\Bigr) \intercal 
\bfitv + \bfitn =  - 1\intercal 1\bfitX \dagger \intercal 

1 \bfitX \dagger 
1

\bfitX 11

1\intercal 1
+\bfitX \dagger \intercal 

1 1 = 0
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since \bfitX \dagger 
1\bfitX 1 is symmetric. Hence,

\=\bfitX \dagger 
1 = \bfitX \dagger 

1 +
1

\beta 
\bfitm \bfitv \intercal \bfitX \dagger 

1

=

\left(  \bfitI  - 

\Bigl( 
\bfitI  - \bfitX \dagger 

1\bfitX 1

\Bigr) 
11\intercal 

1\intercal 
\Bigl( 
\bfitI  - \bfitX \dagger 

1\bfitX 1

\Bigr) 
1

\right)  \bfitX \dagger 
1.

Appendix B. Efficient computation of fixed point. We provide an efficient algorithm for
computing a fixed point in the case where range(\bfitX 1) = range(\bfitX 2). In the SVD-based DMD
algorithm, we efficiently compute the DMD with centering modes by projecting \=\bfitA onto the
singular vectors \bfitU r of \bfitX 1: \=\bfitA r = \bfitU \intercal 

r
\=\bfitA \bfitU r = \bfitU \intercal 

r\bfitX 2\bfitV r\Sigma 
 - 1. The matrix \=\bfitA r satisfies the linear

model
\~\bfitx j+1 = \=\bfitA r \~\bfitx j ,

where \~\bfitx j = \bfitU \intercal 
r \bfitx j . The means \~\bfitmu 1, \~\bfitmu 2 in the lower-dimensional space are similarly related to

\bfitmu 1 and \bfitmu 2 by \~\bfitmu i = \bfitU \intercal 
r \bfitmu i for i = 1, 2.

Consider the solution \~\bfitc to the background mode in the lower-dimensional space:

\~\bfitc =
\bigl( 
\bfitI  - \=\bfitA r

\bigr)  - 1
\~\bfitmu 2  - \=\bfitA r\~\bfitmu \bfone .

Like before, \bfitI  - \=\bfitA r is invertible since \=\bfitA r and \=\bfitA have the same nonzero eigenvalues, and \=\bfitA 
does not have an eigenvalue equal to 1. This computation is done in the lower r dimensional
space in contrast to the original n dimensional space, so \~\bfitc can be efficiently computed by
solving an r \times r linear system. We will show that \bfitc is related to \~\bfitc by \bfitc = \bfitU r\~\bfitc .

Multiplying both sides by \bfitI  - \=\bfitA r yields\bigl( 
\bfitI  - \=\bfitA r

\bigr) 
\~\bfitc = \~\bfitmu 2  - \=\bfitA r\~\bfitmu \bfone .

Plugging in the relations between \=\bfitA and \=\bfitA r, \bfitmu 1 and \~\bfitmu 1, and \bfitmu 2 and \~\bfitmu 2, we get\bigl( 
\bfitI  - \bfitU \intercal 

r
\=\bfitA \bfitU r

\bigr) 
\~\bfitc = \bfitU \intercal 

r \bfitmu 2  - \bfitU \intercal 
r
\=\bfitA \bfitU r\bfitU 

\intercal 
r \bfitmu 1.

Note that since range(\bfitX 1) = range(\bfitX 2), then \bfitmu 1,\bfitmu 2 \in range(\bfitX 1) and range( \=\bfitA ) \subseteq range(\bfitX 1).
Hence, \bfitU r\bfitU 

\intercal 
r \bfitmu 1 = \bfitmu 1, \bfitU r\bfitU 

\intercal 
r \bfitmu 2 = \bfitmu 2, and \bfitU r\bfitU 

\intercal 
r
\=\bfitA = \=\bfitA . Multiplying both sides by \bfitU r and

using the previous identities, we get\bigl( 
\bfitI  - \=\bfitA 

\bigr) 
\bfitU r\~\bfitc = \bfitmu 2  - \=\bfitA \bfitmu 1.

Since \bfitI  - \=\bfitA is invertible,

\bfitU r\~\bfitc =
\bigl( 
\bfitI  - \=\bfitA 

\bigr)  - 1 \bigl( 
\bfitmu 2  - \=\bfitA 

\bigr) 
\bfitmu 1 = \bfitc .
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