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Abstract

Motor behaviors are central to many functions and dysfunctions of the brain, and understanding their neural
basis has consequently been a major focus in neuroscience. However, most studies of motor behaviors have
been restricted to artificial, repetitive paradigms, far removed from natural movements performed “in the wild.”
Here, we leveraged recent advances in machine learning and computer vision to analyze intracranial record-
ings from 12 human subjects during thousands of spontaneous, unstructured arm reach movements, observed
over several days for each subject. These naturalistic movements elicited cortical spectral power patterns con-
sistent with findings from controlled paradigms, but with considerable neural variability across subjects and
events. We modeled interevent variability using 10 behavioral and environmental features; the most important
features explaining this variability were reach angle and day of recording. Our work is among the first studies
connecting behavioral and neural variability across cortex in humans during unstructured movements and con-
tributes to our understanding of long-term naturalistic behavior.
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Significance Statement

Understanding the neural basis of human movement has long been a key focus in neuroscience. However,
researchers often study constrained, monotonous tasks that differ greatly from the rich and diverse natural
movements we actually make. Here, we use data-intensive computational approaches to reveal patterns in
neural activity underlying naturalistic human arm movements. While such movements match previous ex-
perimental findings on average, there is substantial neural variability from one movement to the next. We
partially explain this variability by aspects of the movement observed, though much variability remains un-
accounted for. Our study sheds light on how the brain generates natural arm movements and emphasizes
the critical need to study brain activity in more unstructured settings that mimic daily life.

Introduction
Natural human movements are remarkable in their com-

plexity and adaptability, relying on precisely coordinated
sensorimotor processing in several cortical regions (Miller
et al., 2007; Truccolo et al., 2008; Kalaska, 2009; Sober et
al., 2018). Much of our understanding on the neural basis

of human upper-limb movements has been gained by
studying constrained, repetitive movements in the labora-
tory, using paradigms such as the center-out reaching
task (Leuthardt et al., 2004; Georgopoulos et al., 2007;
Schalk et al., 2008; Wang et al., 2012; Nakanishi et al.,
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2013). Center-out reaching is an elegant method for in-
vestigating the neural basis of movement, but it remains
unclear how well its findings generalize to the spontane-
ous, unstructured actions observed in the real world
(Fried et al., 2017; Umeda et al., 2019). Studies have en-
hanced the realism of experimental reaching paradigms
by incorporating self-cued and less restrictive movements
(Romo and Schultz, 1987; Lee and Assad, 2003; Jackson
et al., 2007; Kornhuber and Deecke, 2016), but few stud-
ies have focused on completely unstructured, naturalistic
human movements recorded outside of defined labora-
tory paradigms. Focusing on such naturalistic behavior
enriches our understanding of the relationship between
motor behavior and cortical activation (Dastjerdi et al.,
2013) and motivates development of robust brain–com-
puter interfaces to restore impaired movement and sen-
sation across diverse contexts (Taylor et al., 2002; Schalk
et al., 2008; Gilja et al., 2011; Omedes et al., 2018; Wilson
et al., 2019).
Intracranial electrophysiological recordings offer a

unique view into the neural correlates of human behavior.
These recordings, obtained using electrocorticography
(ECoG), contain physiologically relevant spectral power
patterns corresponding to a variety of behaviors (Pistohl
et al., 2008; Gunduz et al., 2011; Takaura et al., 2016;
Anumanchipalli et al., 2019; Miller, 2019). ECoG recording
electrodes are implanted on the cortical surface, beneath
the skull and dura; these signals are thus cleaner and less
susceptible to artifact contamination than signals from
electroencephalography (EEG; Ball et al., 2009). Although
implanting ECoG electrodes is an invasive neurosurgical
procedure, the recordings are highly informative and have
a combination of high spatial and temporal resolution not
found in other human neuroimaging or neural recording
modalities (Jacobs and Kahana, 2010; Schalk and
Leuthardt, 2011; Kanth and Ray, 2020).
During instructed upper limb movements, ECoG spec-

tral power in frontoparietal cortical areas, particularly over
sensorimotor cortex, has been shown to transiently in-
crease at high frequencies and decrease at low frequen-
cies (Miller et al., 2007; Pistohl et al., 2012; Talakoub et
al., 2015, 2017). Similar spectral power changes have
also been observed in EEG and local field potential re-
cordings across a wide variety of movement behaviors
(Milekovic et al., 2015; Ofori et al., 2015; Tan et al., 2016;

Chung et al., 2018; Peterson and Ferris, 2018). An impor-
tant attribute of ECoG recordings is that the patients are
being continuously monitored over long periods of time,
often approximately a week, providing unique opportuni-
ties to collect long-term datasets during unconstrained,
uninstructed movements (Chao et al., 2010; Vansteensel
et al., 2013; Wang et al., 2016, 2018; Alasfour et al., 2019;
Gabriel et al., 2019). However, the behavioral and neural
variability of such spontaneous, naturalistic movements
remains unexplored.
Analyzing naturalistic data presents formidable chal-

lenges, but recent innovations in data science make it
possible to extract meaningful findings from increasingly
complex, including naturalistic and opportunistic, data-
sets (Brunton and Beyeler, 2019). Without prior experi-
mental design or direct behavioral measurements, a
critical first step in analyzing naturalistic data had previ-
ously been laborious manual annotation of behavior.
Such tedious labeling severely limits the amount of usable
data and is prone to subjective error. Fortunately, recent
advances in computer vision and machine learning have
enabled substantial automation of the analysis and quan-
tification of naturalistic behaviors (Anderson and Perona,
2014; Berman, 2018; Brown and de Bivort, 2018; Mathis
et al., 2018; Datta et al., 2019). Even so, making sense of
annotated behavior remains challenging in the absence of
a controlled experimental paradigm. There are often many
possible ways to characterize behavioral features, making
it challenging to select ones that are objective and neu-
rally relevant. Fortunately, previous upper-limb movement
studies have identified several neurally relevant behavioral
features that can be obtained without subjective, manual
identification. Such behavioral features include the angle,
duration, magnitude, and velocity of the movement as
well as whether or not the movement was bimanual
(Donchin et al., 2002; Heldman et al., 2006; Ebner et al.,
2009; Mooshagian et al., 2018). Based on previous re-
search (Dumas et al., 2010; Derix et al., 2012), we were
also motivated to consider the effects of social interaction
on neural activity. Finally, ECoG recordings are nonsta-
tionary (Klosterman et al., 2016; Yang et al., 2017), so we
considered how movement-related neural activity varied
over several hours and across recording days.
In this article, we analyzed opportunistic, clinical intra-

cranial recordings from 12 human subjects across 3–5d
each as we observed their naturalistic spontaneous arm
movements. We developed an automated approach to
identify and characterize thousands of spontaneous
arm movements, enabling scalable analysis of video that
was acquired simultaneously with the intracranial record-
ings. We characterized the variability of both naturalistic
upper-limb reaching movements and the corresponding
changes in cortical spectral power. Based on findings
from controlled experiments, we hypothesized that natu-
ralistic reaches would be associated with transient low-
frequency power decreases and high-frequency power in-
creases, localized to frontoparietal sensorimotor cortices
(Miller et al., 2007; Talakoub et al., 2017). We also as-
sessed the variability of these event-related spectral
power fluctuations and performed regression to partially
explain this neural activity using behavioral features.
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Materials and Methods
Subject information
We analyzed opportunistic clinical recordings from 12

subjects (8 males, 4 females) during their clinical epilepsy
monitoring. Subjects were (mean 6 SD) 29.46 7.9 years
old at the time of recording. Our study was approved by
the University of Washington Institutional Review Board
for the protection of human subjects. All subjects pro-
vided written informed consent.
We selected subjects who had ECoG electrode coverage

near primary motor cortex, with either one 8� 8 or two 4� 8
electrode grids placed subdurally on the cortical surface.
Additional electrodes were implanted on the cortical surface
for some subjects, resulting in 87.06 12.9 total surface elec-
trodes per subject (mean6 SD). In addition, five subjects had
23.26 12.1 intracortical depth electrodes (mean 6 SD).
Electrodes were implanted primarily within one hemisphere
for each subject (five right hemisphere, seven left hemi-
sphere). Single-subject electrode placement and recording
duration information are given in Extended Data Figure 1-1.

Data collection
Subjects underwent 24 h clinical monitoring, involving

semicontinuous ECoG and audio/video recordings over
7.462.2 d per subject (mean 6 SD). Some breaks oc-
curred throughout monitoring [on average, 8.36 3.2 total
breaks per subject, each lasting 1.96 2.4 h (mean6 SD)].
For all subjects, we restricted our analysis to days 3–7
following the electrode implantation surgery, to exclude
potentially anomalous neural and behavioral activity im-
mediately following electrode implantation surgery. For
several subjects, some days were excluded because of
corrupted or missing data files, as noted in Extended Data
Fig. 1-1. During clinical monitoring, subjects were ob-
served during a variety of typical everyday activities,
such as eating, sleeping, watching television, and social-
izing while confined to a hospital bed. ECoG and video
were initially sampled at 1000Hz and 30 frames per sec-
ond, respectively. Figure 1 shows an example of the clini-
cal monitoring setup, along with our data-processing
pipeline.

Figure 1. Schematic overview of data-processing, analysis, and modeling framework. a, b, Based on continuous video monitoring
of each subject (example video frame shown in a), trajectories of the left and right wrists (WristL and WristR in b) were estimated
using neural networks (Mathis et al., 2018) and automatically segmented into move (gray) and rest (white) states as shown in b. c, d,
Raw multielectrode ECoG was filtered and rereferenced; bad electrodes (e.g., ones with artifacts) were removed from further analy-
sis. e, Movement onset events detected from video as shown in b were aligned with ECoG data using time stamps. f, For each
move event at each electrode, spectral power was computed and visualized as a log-scaled spectrogram. g, Summarizing across
events and electrodes, we projected the spectral power from electrodes onto eight cortical regions based on anatomic registration
and computed the median power across movement events. h, Our data included 12 subjects; their electrode placements are shown
in MNI coordinates (see Extended Data Figure 1-1 for subject-specific details). Five of the subjects had electrodes implanted in their
right hemispheres (denoted by asterisks). For consistency of later analyses, we mirrored these electrode locations as shown. i, To
partially explain the event-by-event neural variability in LFB (8–32Hz) and HFB (76–100Hz) spectral power, we fit multiple linear re-
gression models at each electrode using behavioral features extracted from the videos.
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ECoG data processing
We processed the raw ECoG data using custom MNE-

Python scripts (Gramfort et al., 2013). First, we removed
DC drift by subtracting the median voltage of each elec-
trode. Widespread, high-amplitude artifacts were then
identified by abnormally high electrode-averaged abso-
lute voltage [interquartile range (IQR), .50]. We set these
artifacts to 0, along with all data within 2 s of each identi-
fied artifact. Removing such high-amplitude discontinu-
ities minimizes subsequent filtering artifacts because of
large, abrupt changes in the signal (Gibbs, 1899).
With data discontinuities removed, we bandpass fil-

tered the data (1–200Hz) and notch filtered to minimize
line noise at 60Hz and its harmonics. The data were then
resampled to 500Hz and rereferenced to the common
median for each grid, strip, or depth electrode group.
Electrodes with bad data were identified based on abnor-
mal SD (IQR, .5) or kurtosis (IQR, .10) compared with
the median value across channels. This process resulted
in the removal of 4.964.9 surface electrodes per subject
and 1.06 1.4 depth electrodes for each of the five sub-
jects with depth electrodes.
Electrode positions were localized using the Fieldtrip

toolbox in MATLAB (Oostenveld et al., 2011; Stolk et al.,
2018) to enable multisubject analyses. This process in-
volved coregistering preoperative MRI and postoperative
computed tomography scans, manually selecting electro-
des in 3D space, and warping electrode positions into
Montreal Neurological Institute (MNI) space.

Movement event identification and pruning
We performed markerless pose estimation on the raw

video footage separately for each subject to determine
wrist positions (Fig. 1a). First, for each subject, we man-
ually annotated 1000 random video frames with the 2D
positions of the following nine key points: the subject’s
nose, ears, wrist, elbows, and shoulders (https://tinyurl.
com/human-annotation-tool). Video frames were ran-
domly selected across all days, with preference given to
frames during active, daytime periods. Note that these an-
notated frames comprised 0.01% of all video frames for
each subject, demonstrating the infeasibility of annotating
all video frames by hand. These manually annotated
frames were used to train a separate neural network
model for each subject using DeepLabCut (Mathis et al.,
2018). Each model was then applied to every video for
that subject to generate estimated wrist trajectories.
Movement states were identified by applying a first-

order autoregressive hidden semi-Markov model to each
wrist trajectory. This state segmentation model classified
the wrist trajectory into either a move or rest state. For
this study, we focused on movements of the wrist contra-
lateral to the implanted hemisphere. Contralateral wrist
states were then discretized, and movement initiation
events were identified at state transitions where 0.5 s of
rest states are followed by 0.5 s of move states (Singh et
al., 2020).
After identifying movement initiation events, we coarsely

labeled the video data manually (;3min resolution) and ex-
cluded armmovements during sleep, unrelated experiments,

and private times (as specified in our Institutional
Review Board protocol). In addition, we only retained
movement events where (1) movement durations were
between 0.5–4 s; (2) the confidence scores from
DeepLabCut were.0.4, indicating minimal marker oc-
clusion; and (3) wrist movements followed a parabolic
trajectory, as determined by a quadratic fit to the
wrist’s radial movement (R2.0:6). We found that this
quadratic fit criteria eliminated many outliers with
complex movement trajectories and improved the in-
terpretability of our subsequent analyses (Polyakov et
al., 2009). For each day of recording, we selected up to
200 events with the highest movement-onset veloc-
ities. Finally, all movement initiation events were visu-
ally inspected, and events with occlusions or false-
positive movements were removed (17.8 6 9.9% of
events (mean 6 SD)].

ECoG–event synchronization and segmentation
We used time stamps accompanying clinical recordings

to synchronize movement initiation events with ECoG re-
cordings and generated 10 s ECoG segments centered
around each event. ECoG segments with missing data
and large artifacts, such as line noise, were removed by
computing log-transformed spectral power density for
each segment and discarding segments with power
,0dB or with abnormally high power at 115–125Hz (.3
SDs) compared with all segments. With these bad ECoG
segments removed, we computed log-transformed time–
frequency spectral power using Morlet wavelets (Debnath
and Shah, 2015). Power at each segment was then base-
line subtracted, using a baseline defined as 1.5–1 s before
each movement initiation event.

Projecting power into regions of interest
Because electrode placement was clinically motivated

and varied greatly across subjects, we projected the
spectral power computed at every electrode into common
regions of interest (ROIs) defined by the AAL (automated
anatomical labeling) atlas (Tzourio-Mazoyer et al., 2002).
Before projection, to combine all subjects, all right hemi-
sphere electrode positions were flipped into the left hemi-
sphere. Using EEGLAB and MATLAB, we mapped from
electrodes to small, predefined brain regions by position-
ing a three-dimensional Gaussian (2 cm full-width at half-
maximum) centered at each electrode position and calcu-
lating the value of the Gaussian at each small region
(Delorme and Makeig, 2004; Bigdely-Shamlo et al., 2013;
Peterson et al., 2018). The values across small regions
were combined based on the AAL region boundaries, pro-
viding a mapping between each electrode and AAL region
based on radial distance. We performed this projection
procedure separately for each subject.
By summing the weights from these mappings across

electrodes, we estimated the electrode density for each
AAL region. We retained regions with an average elec-
trode density.3 across subjects, resulting in the follow-
ing eight ROIs: middle frontal, precentral, postcentral,
inferior parietal, supramarginal, superior temporal, middle
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temporal, and inferior temporal (see Fig. 3). These eight
ROIs represent where most of the electrodes were lo-
cated across subjects. We then normalized the weights
for each ROI so that they summed to 1. These normalized
weights were used to perform a weighted average of elec-
trode-level spectral power for every ECoG segment, gen-
erating a spectral power estimate at each region of
interest.
After projecting single-event spectral power onto re-

gions of interest, we computed the median value across
events separately for each subject and region. We then
averaged the event median spectral power across sub-
jects to obtain group-level estimates for each region of in-
terest. To mask spectral power patterns that were not
significant, group-level spectral power for every fre-
quency bin within each region of interest was then com-
pared with a 2000-permutation bootstrap distribution
generated from baseline time points. Nonsignificant dif-
ferences from each bootstrap distribution were set to 0
(p.0.05, two-sided bootstrap statistics, false discovery
rate correction; Benjamini and Hochberg, 1995).

Single-event behavioral metadata features
We extracted multiple behavioral and environmental

metadata features that quantify variations in movement
parameters and environmental contexts (Donchin et al.,
2002; Heldman et al., 2006; Ebner et al., 2009;
Mooshagian et al., 2018). These features were later used
as input variables for regression models of interevent
spectral power and can be divided into four categories.

Timing features
Day of recording and time of day for each movement in-

itiation event are used to capture long-term variations in
the neural response.

Reach movement features
To quantify differences in the detected movements, we

defined a reach as the maximum radial displacement of
the wrist marker during the detected move state com-
pared with its position at each movement initiation event.
These features included the duration and magnitude of
each reach. We also computed the 2D reach angle and
transformed angles at 90–2708 to range from 908 to �908,
respectively. This transformation made the reach angle
sensitive to vertical reach variations, with 908 for upward
reaches and �908 for downward reaches. We also com-
puted wrist marker radial speed during movement onset.
Note that these movement features were based on the lo-
cation of the video camera, which varied slightly across
subjects and recording days.

Environmental feature
Based on results from the literature (Dumas et al., 2010;

Derix et al., 2012); we were motivated to consider how en-
vironmental factors affect electrocortical power. Here, we
examined the environmental factor of people talking dur-
ing movement initiation. First, we cleaned the recorded
audio signal using spectral noise gating (https://www.
audacityteam.org), which performed 40dB reduction on
audio signal components that were similar to a selected

noise period during rest. We then used the short-time
Fourier transform to compute the spectral power from
370 to 900Hz as a proxy for speech (Master et al., 2006).
This power was divided by the total power at each time
point, producing a ratio that is robust to broadband
changes in the audio signal caused by noise. This speech
ratio was smoothed using a first-order low-pass filter with
4.2 mHz cutoff to minimize the effects of transient
changes in power because of noise. We then averaged
this ratio from �1 to 1 s around each movement initiation
event, generating a speech ratio feature that ranges from
0.0 to 1.0.

Bimanual reach features
While movement initiation event selection was based

solely on contralateral wrist movement, the ipsilateral
wrist can still move and may affect the electrocortical re-
sponse. We quantified the relative magnitude of ipsilateral
wrist movement by computing the ratio of the ipsilateral
wrist reach magnitude to the sum of ipsilateral and con-
tralateral reach magnitudes. In addition, we computed the
temporal overlap between contralateral and ipsilateral
move states over the duration of the entire contralateral
wrist movement. Finally, we computed a binary feature
that classified movements as either unimanual or bima-
nual based on the amount of temporal lag between con-
tralateral and ipsilateral wrist movement onset. This
feature was bimanual if a sequence of four consecutive
move states of the ipsilateral wrist began either 1 s before
contralateral wrist movement initiation or anytime during
the contralateral wrist move state.

Single-event spectral power linear regression
Using the 10 extracted behavioral features as inde-

pendent variables, we fit a separate linear regression
model to the spectral power at every electrode. While pro-
jecting onto cortical regions provided a useful visualiza-
tion, we found that fitting regression models using
projected power resulted in very poor model fits, likely be-
cause of electrodes with maximal power responses over-
lapping multiple regions and differing across subjects. All
features were standardized before regression, with reach
duration and reach magnitude features also being log
transformed. We categorized the two timing features
using one-hot encoding based on the day of recording
and three 8 h segments (12:00 A.M. to 8:00 A.M., 8:00 A.
M. to 4 P.M., and 4 P.M. to 12:00 A.M.) for time of day be-
cause we do not expect linear long-term power changes
within and across days. For the dependent variable, we
averaged spectral power over the first 0.5 s of movement
onset, using previously validated low-frequency bands
(LFBs; 8–32Hz) and high-frequency bands (HFBs; 76–
100Hz; Miller et al., 2007). We then randomly selected
90% of each subject’s total contralateral arm movement
events as training data, while withholding the remaining
10% for testing model generalizability. For each model,
we independently pruned input features using forward se-
lection, retaining features that improved the adjusted R2

for an ordinary least-squares fit. This procedure helped
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minimize overfitting because of too many independent
variables.
For training, we applied a multiple linear regression

model for event-by-event spectral power patterns (see
Fig. 6a, scheme) defined as follows:

yjkf ¼ b 0kf 1
Xm

i¼1

b ikfxij; (1)

where yjkf is the spectral power for movement event j at
electrode k averaged over frequency band f, during the
first 0.5 s of movement initiation; xij is feature i at event j;
and b ikf is the coefficient for feature i at electrode k and
frequency band f (b 0kf is the intercept term). We mini-
mized the Huber norm during model fitting to improve
model robustness to outliers (Huber, 1964).
After training, we performed model validation by com-

puting the R2 on withheld data, referred to as the “full
model R2.”We also assessed the contribution of each be-
havioral feature independently by shuffling one feature,
fitting a new model, and computing the R2 on the un-
shuffled, withheld data. This new R2 was subtracted from
the full-model R2 to obtain DR2 as an estimate of that fea-
ture’s importance. We repeated this shuffling process and
computation of DR2 across all model features.
We computed independent regression models using

forward selection, along with R2 and DR2 scores, over all
electrodes and for both low- and high-frequency bands.
To minimize bias in our selection of training and testing
data, we performed 200 random, independent train/test
splits for every regression model, averaging the full-model

R2, DR2, and coefficients across all splits. We balanced
days of recording within each train and test set.

Code accessibility
The code/software described in the article is freely

available online at https://github.com/BruntonUWBio/
naturalistic_arm_movements_ecog. For this study, we ran
our code on a Z270 GAMINGM7 (MS-7A57) machine run-
ning Ubuntu 18.04.4 LTS.

Data availability
Our curated dataset is publicly available without restric-

tion, other than citation, through Figshare at https://
figshare.com/projects/Behavioral_and_neural_variability_
of_naturalistic_arm_movements/78666. This public data-
set contains synchronized neural and behavioral data that
can be used to generate Figures 2-6.

Results
We describe behavioral and neural variability observed

in multielectrode intracranial neural recordings and video
from 12 human subjects during thousands of unstruc-
tured arm movements. Each subject had been implanted
with ECoG electrodes for clinical monitoring, and we ana-
lyzed 3–5d of simultaneously recorded video and electro-
physiological data following surgery. We developed an
automated and scalable approach to track upper-limb
movements based on machine learning and then focused
on analyzing spectral power changes associated with

Figure 2. The distribution of extracted behavioral and environmental features show large intersubject variability. For each subject,
features shown include timing (day of recording, time of day), reach parameters (duration, magnitude, angle, onset speed), environ-
ment (speech ratio), and bimanual factors (ratio, overlap, and class). All features significantly differed across subjects (Extended
Data Figures 2-3, 2-4), reflecting the large variability among reach movements (Extended Data Figure 2-1). The total number of
events for each subject was between 151 and 947 (median, 640 across subjects). Each distribution was normalized. These ex-
tracted features were used as inputs to the multiple regression models. Feature pairwise correlations are shown in Extended Data
Figure 2-2. Note that 3 pixels = ;1 cm.
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movements of the wrist contralateral to the hemisphere
with implanted electrodes (Fig. 1a–g). ECoG monitoring
was clinically motivated, so there was substantial varia-
tion in electrode placement among subjects (Fig. 1h).
Because our focus was on arm-reaching behavior, we
chose to analyze 12 subjects who were generally active
during their monitoring and also had electrodes implanted
over frontoparietal sensorimotor cortical areas.

Behavior during naturalistic movements
The goal of our data processing pipeline was to auto-

mate both the identification of wrist movement initiation
events and the description of behavioral and environmen-
tal features around each event. For each subject, we ob-
tained simultaneously recorded neural activity and
movement trajectories immediately before and after the
initiation of each movement event (Fig. 1e). Briefly, two-di-
mensional wrist trajectories were estimated from the
video recordings (Mathis et al., 2018) and then segmented
into move or rest states. For simplicity of interpretation,
we focused on movement initiation events of the wrist
contralateral to the ECoG implantation hemisphere, de-
tected during transitions from rest to move states. While
we later analyzed ipsilateral wrist behavior to determine
whether a contralateral wrist movement was bimanual,
we did not use the ipsilateral wrist for detecting move-
ment events.
The spontaneous wrist movement events that we iden-

tified include a wide variety of upper-limb movement be-
haviors. Because subjects were sitting in bed, a majority
of the movements that we analyzed involved relatively lit-
tle movement of the shoulders and elbows (Extended
Data Fig. 2-1a). Most of the detected movements corre-
sponded to actions such as reaching for a phone, eating,
or touching one’s face. We confirmed that our event

detection primarily identified contralateral wrist move-
ments, as seen in Extended Data Fig. 2-1c.
To better assess behavior during wrist movement

events, we obtained quantitative values of various move-
ment features and associated environmental variables.
We defined a reach as the maximum radial displacement
of the wrist during the detected movement event, com-
pared with the wrist position at movement initiation. We
extracted 10 behavioral metadata features that quantified
the time when each reach began, how the contralateral
wrist moved during the reach, whether people were
speaking during movement initiation, and how much both
wrists moved during each movement.
We find that many metadata feature distributions show

large within-subject and between-subject variations (Fig.
2). All 10 metadata features significantly differed across
subjects (p , 0.001 for every feature, one-way Kruskal–
Wallis test). See Extended Data Figs. 2-3 and 2-4 for fur-
ther statistical details. The number of reaches detected
across days of recording was fairly consistent, with the
exceptions of subjects 04, 05, and 09, who each had 1 d
representing most of the total events. As expected, de-
tected movement events often occurred mostly during
waking hours. Reach duration and reach magnitude show
minimal intersubject variability, with most reaches lasting
,2 s and covering,200 pixels (;67 cm). For reach angle,
the distributions tend to be bimodal, with peaks at 6908,
indicating that detected events are biased toward upward
and downward reaches, with few side-to-side reaches.
Both onset speed and speech ratio distributions vary
greatly across subjects, likely reflecting intersubject dif-
ferences in the activities performed and the number of
people visiting during the detected movement initiations.
We also considered a number of features related to coor-
dinated movements with the ipsilateral arm. For bimanual
ratio and overlap features, the distributions are skewed

Figure 3. Group-level cortical spectral power changes are consistently localized to sensorimotor regions. Spectrograms show
movement event-triggered spectral power patterns for eight cortical regions (highlighted in bottom right) summarized across all 12
subjects (see Extended Data Figure 3-1 for electrode-level spectral power). In general, low-frequency (4–30Hz) power decreases
and high-frequency (50–120Hz) power increases at movement initiation (0 s), with the largest power fluctuations in frontoparietal
sensorimotor areas. Spectral power was projected based on anatomic registration from electrodes onto the following eight regions
of interest: middle frontal (blue), precentral (red), postcentral (green), inferior parietal (magenta), supramarginal (cyan), superior tem-
poral (yellow), middle temporal (orange), and inferior temporal (purple). We subtracted the baseline power of the 1.5–1 s before
movement initiation. Nonsignificant differences from baseline power were set to 0 (p. 0.05).
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toward unimanual movements of the contralateral limb, as
expected from Extended Data Fig. 2-1c, with less skew
for subjects 02, 04, and 05. In contrast, the bimanual
class categorical feature is primarily skewed toward bima-
nual movements, indicating that the ipsilateral wrist is
often moving, but only a small amount.
We also assessed group-level correlations between

feature pairs, finding high correlations for three reach pa-
rameter feature pairs and between all three bimanual fea-
ture pairs (Extended Data Fig. 2-2). Reach magnitude
positively correlates with reach duration (r=0.26) and
onset speed (r=0.56), meaning that reaches tended to
cover more distance when they lasted longer or had high-
er onset speed. Reach duration is also positively corre-
lated with bimanual overlap (r=0.48) because of
movements with long durations having more possible
overlap time. The high correlations between bimanual fea-
tures (pairwise Pearson correlation coefficients: overlap
vs ratio, r=0.51; class vs ratio, r=0.50; and overlap vs
class, r=0.61) indicates that contralateral wrist move-
ments classified as bimanual generally show increased
overlap between ipsilateral and contralateral movements
and increased ipsilateral amplitude relative to contralat-
eral, as expected.

Intracortical spectral power during naturalistic
movements
We find a consistent set of group-level spectral power

patterns, largely localized in frontoparietal sensorimotor
cortical regions. After aligning curated wrist movement
events with preprocessed ECoG recordings, we com-
puted time–frequency spectral power at each electrode
and then visualized group-level spectral patterns pro-
jected onto common regions of interest for all subjects.
Generally, we find the expected pattern of low-frequency
(;4–30Hz) spectral power decrease and high-frequency
(;50–120Hz) power increases during movement initiation
across multiple cortices (Fig. 3) similar to previous find-
ings during controlled movement experiments (Miller et
al., 2007). Because ECoG electrode placement varied
across subjects, we visualized group-level neural activity

by projecting power at every electrode onto the following
eight common cortical regions of interest (Bigdely-
Shamlo et al., 2013): middle frontal, precentral, postcen-
tral, inferior parietal, supramarginal, superior temporal,
middle temporal, and inferior temporal. Maximal power
deviations primarily occur near movement onset, as ex-
pected. Spectral power deviations are largest in magni-
tude in precentral, postcentral, and inferior parietal
regions, which are located in sensorimotor areas of the
brain. The middle frontal region also contains strong
power fluctuations that could indicate motor planning and
possible recruitment of the supplementary motor area. In
addition, low-frequency power decreases appear more
spatially widespread than high-frequency power in-
creases and are also present in supramarginal and superi-
or temporal regions. As expected, all three temporal
cortical regions contain minimal movement-related spec-
tral power fluctuations.
Despite consistent group-level spectral power patterns

across cortical regions, we identified considerable spec-
tral power variability across subjects (Extended Data Fig.
3-1). For instance, the precentral region shows the same
low/high-frequency power pattern for each subject (Fig.
4), but the amplitudes and frequency bands of maximal
power deviation differ widely across subjects. Subjects
03, 06, 07, 08, and 11 show increased power at high fre-
quencies up to 120Hz, while subjects 09 and 12 have
increased power primarily between 60 and 80Hz. For
subjects 04 and 08, low-frequency power decreases
occur across narrower frequency bands compared with
the other subjects. In addition to arising from intersub-
ject differences in neural anatomy and connectivity,
these spectral power variations may reflect variability in
daily activities, electrode placement, medication, and
seizure foci among subjects (Struck et al., 2015;
Skarpaas et al., 2018). Spectral power plots for the
seven other regions of interest are shown in Extended
Data Figs. 4-1, 4-2, 4-3, 4-4, 4-5, 4-6, 4-7.
In addition to intersubject neural variability, we also

identified notable changes in movement-related neural
activity across recording days for several subjects (Fig. 5).
We analyzed spectral power in the precentral region

Figure 4. Spectral power patterns in the precentral region vary considerably across subjects. While some subjects show spectral
power patterns similar to the group-level results in Figure 3, many deviate substantially from the group average pattern in both mag-
nitude and frequency bands. The colormap indicates differences in spectral power relative to baseline 1.5–1 s before movement ini-
tiation (no statistical masking is used). For spectral power plots of the seven other regions of interest, see Extended Data Figures 4-1,
4-2, 4-3, 4-4, 4-5, 4-6, 4-7.
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averaged over the 0.5 s following movement onset and
split into LFBs (8–32 Hz) and HFBs (76–100 Hz) bands,
similar to previous research (Miller et al., 2007).
Statistical significance for each subject was computed
by pooling over all electrodes for that subject (Extended
Data Fig. 1-1). For both frequency bands, spectral
power significantly differed across subjects (p , 0.001
for both bands, one-way Kruskal–Wallis test). For fur-
ther statistical details, see Table 1. We also found a sig-
nificant effect of recording day in LFBs for subjects 03

(p , 0.001, Kruskal–Wallis test), 05 (p = 0.013), 06 (p ,
0.001), 07 (p = 0.041), 08 (p = 0.013), and 11 (p , 0.001),
as well as in HFBs for subjects 03 (p = 0.002), 04 (p ,
0.001), 07 (p , 0.001), 08 (p = 0.004), and 10 (p = 0.006).
For further statistical details, see Table 2. Surprisingly,
these significant recording day effects appear for sev-
eral subjects despite baseline-subtracting spectral
power features. Yet, baseline subtraction does sub-
stantially reduce neural variability across recording
days (Extended Data Fig. 5-1), as expected.

Table 1: Statistical table for group-level spectrograms and precentral banded spectral power

Measure Data structure Type of test 95% confidence interval
Group-level spectrograms (Fig. 3) Non-normal Bootstrap statistics
Precentral banded spectral power across
subjects (Fig. 5)

Non-normal One-way Kruskal–
Wallis test

S01 (LFB, �1.87 to �1.29; HFB, 0.03–0.23)
S02 (LFB, �1.12 to �0.31; HFB, 0.07–0.64);
S03 (LFB, �2.11 to �1.73; HFB, 1.39–1.67)
S04 (LFB, �0.17 to 0.01; HFB, 0.32–0.52)
S05 (LFB, �0.7 to �0.38; HFB, 0.2–0.48)
S06 (LFB, �1.63 to �1.11; HFB, 2.02–2.37)
S07 (LFB, �0.84 to �0.51; HFB, 1.14–1.34)
S08 (LFB, �0.3 to 0.04; HFB, 0.36–0.63)
S09 (LFB, �0.57 to �0.08; HFB, �0.11 to 0.23)
S10 (LFB, �0.87 to �0.35; HFB, 0.01–0.3);
S11 (LFB, �2.3 to �1.86; HFB, 0.09–0.34);
S12 (LFB, �0.66 to �0.44; HFB, 0.06–0.2)

Confidence intervals for LFB (8–32Hz) and HFB (76–100Hz) spectral power are shown for each subject. The 95% confidence intervals were computed using
bootstrap statistics with 5000 replicates. We did not include confidence intervals for group-level spectrograms because of the high number of comparisons per-
formed. S, Subject.

Figure 5. Precentral banded spectral power varies considerably across subjects and recording days. a, b, LFB (8–32Hz; a) and
HFB (76–100Hz; b) spectral power in the precentral region was averaged over the first 0.5 s after movement onset. Boxplots show
spectral power variability across events for every subject, separated by recording day. For each subject, a significant recording day
effect on spectral power is denoted by an asterisk (p , 0.05, Kruskal–Wallis test). Despite the reduction in neural variability caused
by baseline subtraction (Extended Data Figure 5-1), several subjects have significant recording day effects.
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Modeling single-event spectral power with behavioral
features
We developed a robust multiple variable linear regres-

sion model to explain single-event spectral power at each
intracranial electrode using our 10 behavioral metadata
features (Fig. 6a). For each electrode, we modeled LFB
and HFB spectral power averaged over the 0.5 s following
movement onset (Fig. 1i). For every model, behavioral fea-
tures were pruned independently using forward selection

to avoid overfitting. We assessed model performance on
randomly withheld movement events by computing an R2

score (referred to as the full model R2). To assess the con-
tributions of each individual feature, we shuffled the train-
ing labels of that feature, fit a new linear model, and
subtracted the R2 values on withheld data from the full
model R2 values of this model to obtain an estimate of
feature importance. Higher DR2 values indicate features
that explain more variance.

Table 2: Statistical table for precentral banded spectral power, separated by recording day

Measure
Data
structure Type of test 95% confidence interval

Precentral banded spectral
power across recording
days (Fig. 5, LFB)

Non-normal One-way Kruskal–
Wallis test

S01 (day 3, �2.07 to �0.9; day 4, �2.77 to �1.52
Day 5, �1.96 to �1.04; day 7, �1.8 to �0.66)
S02 (day 3, �0.62–0.6; day 4, �1.61 to �0.38;
day 5, �2.67 to �0.32; day 6, �0.72 to 0.39)
S03 (day 3, �3.12 to �2.46; day 4, �2.29 to �1.58;
day 5, �1.55 to �0.86; day 6, �1.71 to �0.77)
S04 (day 3, �0.51 to 0.11; day 4, �0.3 to 0.24; day 5,
�0.51 to 0.07; day 6, �0.31 to 0.07; day 7, �0.16 to 0.11)
S05 (day 3, �1.22 to �0.44; day 4, �1.23 to �0.48;
day 7, �0.56 to �0.18);
S06 (day 3, �2.26 to �1.42; day 4, �2.58 to �1.61; day 5,
�1.1 to �0.4; day 6, �2.08 to �0.94; day 7, �1.65 to 0.18)
S07 (day 3, �1.12 to �0.38; day 4, �0.73 to �0.02; day 5,
�0.84 to �0.42; day 6, �1.24 to �0.8; day 7, �0.93 to 0.09)
S08 (day 3, �0.72 to 0.55; day 4, �1.06 to �0.18; day 5,
�0.23 to 0.09; day 6, �0.18 to 0.11; day 7, �0.09 to 0.18)
S09 (day 3, �1.42 to 0.6; day 4, �0.55 to 0.32; day 5,
�0.65 to �0.01; day 6, �0.99 to 0.51; day 7, �1.14 to 0.29)
S10 (day 3, �1.3 to 0.0; day 4, �0.56 to �0.13; day 5,
�0.59 to �0.09; day 6, �2.03 to �0.37; day 7, �1.22 to �0.27)
S11 (day 3, �3.2 to �2.24; day 4, �2.18 to �1.31; day 5,
�1.91 to �1.28; day 6, �2.18 to �1.51; day 7, �3.06 to �1.68)
S12 (day 3, �0.58 to �0.2; day 4, �1.02 to �0.21; day 5,
�0.86 to �0.39; day 6, �0.72 to �0.32; day 7, �0.85 to �0.47)

Precentral banded spectral
power across recording
days (Fig. 5, HFB)

Non-normal One-way Kruskal–
Wallis test

S01 (day 3, �0.11 to 0.34; day 4, �0.36 to 0.17; day 5,
0.17–0.55; day 7, �0.06 to 0.21)

S02 (day 3, �0.35 to 0.66; day 4, 0.08–0.98;
day 5, �0.72 to 0.76; day 6, 0.06–1.02)
S03 (day 3, 1.6–2.0; day 4, 1.44–1.91;
day 5, 1.16–1.64; day 6, 0.41–1.41)
S04 (day 3, �0.45 to 0.12; day 4, �0.23 to 0.17; day 5,
0.35–0.88; day 6, 0.49–0.93; day 7, 0.32–0.62)
S05 (day 3, �0.12 to 0.5; day 4, 0.03–0.58;
day 7, 0.2–0.58)
S06 (day 3, 2.08–2.71; day 4, 1.76–2.41; day 5,
1.96–2.58; day 6, 1.39–2.33; day 7, 1.71–2.83)
S07 (day 3, 1.45–1.9; day 4, 1.23–1.76; day 5,
0.9–1.26; day 6, 0.82–1.13; day 7, 1.15–1.68)
S08 (day 3, �0.11 to 0.88; day 4, 0.05–0.72; day 5,
0.6–1.05; day 6, 0.4–0.71; day 7, 0.13–0.47);
S09 (day 3, �0.93 to 0.32; day 4, �0.52 to 1.04; day 5,
�0.24 to 0.21; day 6, �0.02 to 0.73; day 7, �0.3 to 0.4)
S10 (day 3, �0.33 to 0.28; day 4, �0.14 to 0.23; day 5,
0.08–0.47; day 6, �0.37 to 0.55; day 7, �0.04 to 0.57)
S11 (day 3, �0.24 to 0.36; day 4, �0.26 to 0.34; day 5,
0.16–0.52; day 6, 0.04–0.4; day 7, 0.02–0.81)
S12 (day 3, 0.08–0.34; day 4, �0.26 to 0.23; day 5,
�0.05 to 0.26; day 6, 0.01–0.26; day 7, 0.04–0.34)

Confidence intervals for LFB (8–32Hz) and HFB (76–100Hz) spectral power are shown for each subject, separated by recording day. The 95% confidence inter-
vals were computed using bootstrap statistics with 5000 replicates. S, Subject.
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For both frequency bands, intracortical activity variabili-
ty is best explained by the fit of our models to electrodes
located in frontoparietal sensorimotor areas (Fig. 6b,
Extended Data Fig. 6-1). This finding matches well with
the spatial distribution of spectral power (Fig. 3).
However, all R2 scores are at most 0.25, indicating that
even the best models cannot explain .75% of the var-
iance in the withheld data. Among individual features, we
find that reach angle and day of recording are the most in-
formative (Fig. 6c). Reach angle is also the most often re-
tained feature following forward selection in sensorimotor
regions (Extended Data Fig. 6-2), indicating its importance
for modeling neural activity during movement onset. In
addition, both reach angle and day of recording have the
largest coefficient magnitudes among behavioral features
in the regression models (Fig. 6c). The coefficients for
reach angle indicate that upward reaches are associated
with decreased low-frequency power and increased high-
frequency power compared with the average response. In
other words, upward reaches tend to increase the magni-
tude of the spectral power pattern seen. The SD of the
coefficients corresponding to recording day are surpris-
ingly large, indicating that baseline-subtracted neural

responses still vary across long time scales usually not
captured in short, controlled experiments. This observa-
tion highlights the importance of properly accounting for
long-term temporal effects when understanding and de-
coding neural recordings.

Discussion
Our results demonstrate that electrocortical correlates

of naturalistic arm movements in humans corroborate
findings from controlled experiments on average, as we
had hypothesized. However, we found high behavioral
and neural variability during naturalistic movements
across participants and recording days. Using multiple re-
gression modeling, we were able to partially explain this
event-by-event electrocortical variability using behavioral
metadata features extracted from video recordings. In
general, we find that results from controlled upper-limb
reaching tasks do generalize to naturalistic movements
on average, but naturalistic movements involve consider-
able event-by-event neural variability that cannot be fully
explained by simple behavioral and environmental
measures.

Figure 6. Event-by-event multiple regression models explain changes in neural spectral power using extracted behavioral and envi-
ronmental features. a, We fit multiple linear regression models at each electrode using behavioral features extracted from the videos
(orange) and frequency-banded spectral power (magenta). Regression models minimized the Huber norm during model fitting to im-
prove model robustness to outliers. b, Models with the largest R2 scores on withheld data were primarily located in sensorimotor
areas (see Extended Data Figure 6-1 for single subject R2 scores). c, Reach angle and recording day were the most explanatory
model features, especially when regressing low-frequency spectral power. Reach angle was also the most often retained feature in
sensorimotor areas after forward selection (Extended Data Figure 6-2). d, Regression coefficients indicate that upward reaches en-
hance the average spectral power pattern observed. Recording day and time of day both have large SDs across one-hot encoded
variable coefficients, highlighting the effects of long-term temporal variability. Only models with R2.0:05 on withheld data are
shown for b–d.
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Across subjects, we observe an average decrease in
low-frequency band cortical power and an increase in
high-frequency band cortical power during naturalistic
upper-limb movement initiation, consistent with previous
controlled studies (Miller et al., 2007; Gabriel et al., 2019).
Decreases in low-frequency power are thought to reflect
changes in the current neural state if a new or unexpected
event occurs (Engel and Fries, 2010). In our study, the
neural state can be disrupted during movement initiation
by a variety of factors, such as increased attention or pre-
diction error once the arm is in motion. In contrast, high-
frequency power increases may indicate active sensori-
motor processing (Başar et al., 2001; Manning et al.,
2009; Tam et al., 2019; Branco et al., 2019a,b). Low-fre-
quency and high-frequency power changes are thought
to represent two separate processes (Miller et al., 2009;
van Kerkoerle et al., 2014), which could explain the differ-
ence seen in the spatial spread of cortical power changes
between low and high frequencies. In our study, the fre-
quency bands of the maximum spectral power responses
do differ across subjects, suggesting that the processes
underlying the low- and high-frequency bands vary
across subjects. This intersubject variability reinforces the
importance of assessing both subject-specific neural re-
sponses and group-level activity.
Despite showing the expected cortical pattern on aver-

age, naturalistic reaches, exhibited notable behavioral
and neural variability across subjects and recording days.
This high variability may reflect variations in sensory input
and movement constraints because of different types of
behaviors (Lisberger and Medina, 2015). Categorizing
such behaviors during reaching would be challenging,
however, because of many possible neurally relevant be-
havior types and a lack of objective measures that can
properly discriminate such behaviors without user-de-
fined labels (Gomez-Marin et al., 2014). The neural varia-
tion seen across recording days could be caused by
several factors, including changes in medication, seizure
frequency, and alertness while recovering from ECoG im-
plantation surgery. Similar long-term, interday variability
has been observed in previous EEG and ECoG studies
(Melnik et al., 2017; Gliske et al., 2018; Nurse et al., 2018).
It is also worth noting that these day-to-day changes in
ECoG spectral power are small in magnitude (61–2dB)
relative to spectral power without any baseline values
subtracted (;10–50dB). Furthermore, recent research
suggests that despite long-term neural recording variabili-
ty, low-dimensional representations of this activity remain
stable over long periods of time (Gallego et al., 2020).
During regression modeling, we find that our models

only explained at most 25% of the variability; this measure
is low, but not unusual given the single-event noise in
the electrocortical signal (Liang and Bougrain, 2012).
Furthermore, some of this variability may be explained by
other movement behaviors beyond what we quantified
using our pose-tracking methodology (Musall et al.,
2019). These low scores may also reflect the simplicity of
our linear models. While studies have shown evidence of
nonlinear relationships between electrocortical activity
and behavior (David et al., 2004; Ting and McKay, 2007),

we chose linear regression models because they provide
easily interpretable results and allow straightforward as-
sessments of individual feature contributions.
Our regression model identified vertical reach angle and

day of recording as the most explanatory features. The
importance of vertical reach angle makes sense because
upward reaches require more effort and activate different
muscles than downward reaches. In addition, population
neural activity has been shown to robustly encode reach
direction (Georgopoulos et al., 1986; Hu et al., 2018). We
did not include a reach angle feature sensitive to horizon-
tal movements because reach angle distributions were
skewed toward vertical angles at 6908, as seen in Figure
2. The day of the recording feature was also found to ex-
plain some of the neural variance captured by regression
modeling. This finding is sensible given the significant in-
terday neural variability seen for several subjects.
Our study has several important limitations. Because

we are performing human ECoG research, we are study-
ing subjects who have epilepsy and are recovering from
electrode implantation surgery, which may introduce con-
founding effects because of medication and seizure loca-
tion. To address this issue, we ignored data from the first
2 d postsurgery, removed electrodes with abnormal activ-
ity, and assessed movements across multiple days to
avoid single-day bias. In addition, we assessed behavior
from subjects who were confined to a hospital bed and
selected parabolic movement trajectories for further anal-
ysis. Thus, these movements were not 100% naturalistic,
but the arm movements we analyzed were still spontane-
ous and unconstrained by experimental factors. Another
limitation is that the clinical video monitoring system in-
cludes only one camera, whose view can be obstructed
by people and various objects throughout the day. We
minimized obstruction effects by selecting movement
events with high confidence scores in the event detection
algorithm and by manually reviewing all detected events
to check whether they were actual movements and not
false positives, but using multiple cameras would extend
body tracking to 3D in future studies. Additionally, the
video camera was positioned by the clinical staff and was
vertically rotated away by the clinical staff during private
times, meaning that the video view changed slightly
throughout the day. We minimized the effect of such rota-
tions on our behavioral features by excluding camera ro-
tation events and using movement features that were
relative to the start of each reach.
Our results underline the importance of studying natu-

ralistic movements and understanding neural variability
across multiple days. Our approach leverages pre-exist-
ing clinical setups and could be extended to other move-
ments and behaviors, such as grasping objects, sleep/
wake transitions, and conversing with others. Future set-
ups with multiple RGB or depth cameras would allow for
improved motion-tracking performance and the ability to
analyze more complex 3D trajectories (Desmarais et al.,
2020; Mathis et al., 2020). In addition, our approach could
be extended beyond epilepsy monitoring to study neural
correlates of naturalistic movements during long-term
scalp EEG recordings or chronic neural implants in other
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clinical cohorts (Duun-Henriksen et al., 2020; Gilron et al.,
2020). It is also worth noting that such markerless pose
tracking has also been used to track lower-limb move-
ments (Chambers et al., 2019; Cao et al., 2021), provided
the subject remains within view of the cameras.
More broadly, our results have implications for develop-

ing novel brain–computer interfaces that can decode neu-
ral data across subjects in natural environments. For
instance, movement data from many subjects could be
combined to train decoders that generalize to new sub-
jects with minimal retraining and are robust to a richer set
of behavioral and environmental contexts. By publicly re-
leasing our curated dataset, we hope to spur further re-
search that enhances our understanding of naturalistic
behavior and informs the development of next-generation
brain–computer interfaces.
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