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Dexterous motor control requires feedback from

proprioceptors, internal mechanosensory neurons that sense

the body’s position and movement. An outstanding question in

neuroscience is how diverse proprioceptive feedback signals

contribute to flexible motor control. Genetic tools now enable

targeted recording and perturbation of proprioceptive neurons

in behaving animals; however, these experiments can be

challenging to interpret, due to the tight coupling of

proprioception and motor control. Here, we argue that

understanding the role of proprioceptive feedback in

controlling behavior will be aided by the development of

multiscale models of sensorimotor loops. We review current

phenomenological and structural models for proprioceptor

encoding and discuss how they may be integrated with existing

models of posture, movement, and body state estimation.
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Experimental perturbations probe the role of
proprioceptive feedback in motor control
All animals possess specialized sensory neurons that

monitor the mechanical consequences of their actions.

These sensors, known as proprioceptors, are essential for

coordinating body movement and maintaining body pos-

ture [1,2]. While it is possible for some isolated motor

circuits to generate structured output in the absence of

proprioceptive feedback, behaviors driven by purely

feedforward motor signals are often clumsy and ineffec-

tual [3]. Understanding how proprioceptive feedback
www.sciencedirect.com 
interacts with motor circuits to control the body remains

a fundamental problem in neuroscience.

An effective method to investigate the function of sensory

circuits is to perturb neural activity and measure the

effect on an animal’s behavior. For example, activating

or silencing neurons in the mammalian visual cortex [4] or

insect optic glomeruli [5] has identified the circuitry and

patterns of activity that underlie visually guided beha-

viors. However, due to the distributed nature of proprio-

ceptive sensors and their tight coupling with motor con-

trol circuits, perturbations to the proprioceptive system

can be difficult to execute and tricky to interpret.

Mechanical perturbation experiments

Early efforts to understand the behavioral contributions

of proprioceptive feedback relied on lesions and mechan-

ical perturbations. A classic example of a proprioceptive

perturbation experiment is the use of vibration to artifi-

cially excite primary muscle spindle afferents. In humans,

muscle vibration creates the illusory perception that a

muscle is being stretched [6]. If a person is walking,

vibrating their hamstring produces an increase in forward

walking speed, while vibrating their quadriceps has little

effect on walking kinematics [7] (Figure 1, top left).

During backward walking, however, these effects are

reversed, suggesting that proprioceptive feedback acts

in a context-dependent manner.

Longer-term mechanical perturbations have also been

used to investigate the dynamics of sensorimotor adapta-

tion. Bässler et al. [8] inverted the sign of feedback signals

from the femoral chordotonal organ in the stick insect leg

by surgically crossing the receptor tendon (Figure 1,

bottom left). This manipulation causes a walking stick

insect to either ‘salute’ or ‘drag’ her leg, and a standing

stick insect to rhythmically wave her tibia. Over the

course of a month, Bässler and colleagues observed that

the walking salute and dragging remained unchanged,

while the waving movements gradually decreased. This

observation suggests that the postural feedback control

system recovered, while the control system for leg move-

ment did not.

These examples illustrate several hazards to consider

when executing and interpreting proprioceptive pertur-

bation experiments. First, the effects of proprioceptive

feedback on motor output are often context-dependent,

such as during forward and backward walking. Second,

proprioceptive signals are typically used for controlling
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Examples of experimental perturbations used to probe the role of proprioceptive feedback in motor control. Top left: Vibration of hamstring

muscles in humans stimulated muscle spindles, leading to an increase in walking speed [7]. Bottom left: Inverting sensory feedback from the

femoral chordotonal organ of a stick insect front leg by crossing the receptor tendon (arrow) led to saluting or dragging of the leg during walking

and waving during rest (front leg in the air, other legs on the ground). The normal rest posture of the front leg (extended in air) recovered after a

few days, but saluting and dragging during walking remained unchanged [8]. Top right: Optogenetic stimulation of second-order proprioceptive

neurons in tethered Drosophila walking on a treadmill caused a decrease in walking speed. Trace shows mean of multiple animals [9�]. Bottom

right: Genetic ablation of hindlimb muscle spindles in the mouse lumbar spinal cord caused inter-limb coordination deficits only during fast

walking. 3D plots show timing (phase) of right hindlimb (RH), right forelimb (RF), and left forelimb (LF) relative to left hindlimb (LH) for gait cycles

with (gray) and without (green) muscle spindles [10�].
both posture and movement, often at the same time. An

additional challenge of mechanical perturbations is that

they often lack specificity, leaving it unclear which spe-

cific proprioceptor neurons underlie the observed

behavior.

Neural perturbation experiments

With the emergence of genetic tools to label and manip-

ulate specific cell-types, it has recently become possible

to genetically activate or silence specific proprioceptive

neurons to assess their role in behavior. However, such

manipulation experiments come with their own chal-

lenges [11]. For example, Agrawal et al. [9�] used opto-

genetics to study a population of second-order proprio-

ceptive neurons in Drosophila that encode extension of

the fly’s tibia. Activation of these neurons caused walking

flies to slow down, suggesting that they may participate in

controlling walking speed (Figure 1, top right). However,

fine-grained kinematic analysis of leg joints revealed that

the same perturbation produced reflexive flexion of the
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tibia whenever the leg was unloaded, not just during

walking. Thus, the decrease in walking speed was likely

driven by the fly’s reaction to a perceived extension of her

tibia, rather than a disruption to walking speed control.

Another recent study used intersectional genetic methods

to test the role of local proprioceptive feedback in rodent

locomotion. When Takeoka and Arber [10�] expressed

Diphtheria toxin (DTX) in muscle spindles that inner-

vate the front or rear legs of adult mice, they observed

only subtle changes in spontaneous walking gait. The

inter-limb coordination deficits produced by these abla-

tions became apparent only when mice were forced to run

at high speeds on a motorized treadmill (Figure 1, bottom

right).

These examples illustrate how it can be misleading to

infer a direct, causal relationship between neural activity

and behavior when the perturbation impacts multiple

feedback loops at different levels of the nervous system.
www.sciencedirect.com



Computational models of proprioception Dallmann et al. 3
For example, activating or silencing proprioceptors may

alter postural reflexes that interfere with an ongoing

behavior, such as walking. In other cases, changes to

motor output produced by genetic perturbations may

only become visible in specific behavioral contexts.

Finally, removing proprioceptive feedback can lead to

general deficits to motor coordination that alter an ani-

mal’s ability or desire to perform certain behavioral tasks.

How models can help
Our thesis is that the design and interpretation of such

perturbation experiments would benefit from the inte-

gration of models for proprioceptive sensing with theo-

retical frameworks for motor control. Because of the tight

feedback between proprioceptive and motor circuits at

multiple levels, the emergent behavior of a sensorimotor

system depends on how its components are integrated.

Therefore, computational simulations are a means to

generate specific, quantitative predictions about the roles

of key parameters in the system, including sensory delay,

gain modulation, and encoding nonlinearities. By formal-

izing how the components contribute to overall behavior,

an integrated model can illustrate how different manip-

ulations may produce similar results and aid in the design

of experiments to disambiguate among multiple

hypotheses.

Our overall goal is to guide the design and interpretation

of experiments to understand the role of proprioceptive

neurons in flexible control of behavior. We first review

current approaches to model sensory coding in proprio-

ceptive sensory neurons. Next, we discuss the role of

proprioceptive feedback in existing models of posture,

locomotion, skilled movements, and body state estima-

tion. Although proprioception plays an important role in

motor learning, here we focus on innate behaviors driven

by movement of the limbs, such as walking. We conclude

by discussing three obstacles to achieving a systems-level

understanding of proprioception: firstly, the diversity of

proprioceptive sensors; secondly, a lack of experimental

separability between proprioceptive and motor circuits;

and finally, context-dependent modulation of propriocep-

tive feedback for guiding behavior.

Computational models of sensory coding in
proprioceptors
Proprioceptors are mechanosensory neurons located

within muscles, tendons, and joints that convert mechan-

ical forces in the body into patterns of neural activity.

Proprioceptors can be classified into different functional

subtypes that encode limb displacement, load, or their

time derivatives [2]. For example, the proprioceptors

innervating a muscle spindle encode either muscle length

or a combination of muscle length and its rate of change

(velocity) [12]. Similarly, proprioceptors in the insect

femoral chordotonal organ encode distinct kinematic

parameters, including position, velocity, and acceleration
www.sciencedirect.com 
[13,14]. Recent studies have begun to map these func-

tional subtypes onto neuronal cell-types defined using

genetic markers [13,15]. These tools now enable targeted

perturbation experiments to investigate the role of pro-

prioceptor subtypes in specific motor tasks.

Due to a combination of neural and mechanical properties

[16,17], proprioceptors are tuned to biologically relevant

stimuli. These same properties can make proprioceptor

responses vary as a function of stimulus history and

behavioral context. Such nonlinearities make propriocep-

tors different from most engineered sensors, which are

designed to directly measure a physical quantity, such as a

joint angle or torque. Because sensory neurons constrain

the information available for other downstream computa-

tions in the nervous system, the construction of proprio-

ceptor models is an essential first step in quantitative

analysis of sensorimotor loops.

Current models of proprioceptors fall into two broad

categories: phenomenological models and structural mod-

els. Phenomenological models reproduce the computa-

tional properties of a proprioceptor in abstraction, for

instance by deriving a mathematical function, often a

transfer function, from experimentally determined rela-

tions between mechanics and neural activity [18–23].

This function is often derived from recorded neural

activity in response to simple ramp-and-hold or sinusoidal

stimuli using linear systems theory or non-linear curve

fitting.

Phenomenological models are compact and computation-

ally efficient, which allows them to be integrated with

models of the motor system. For example, the simple

muscle spindle models by Prochazka and Gorassini [20

,21] have been incorporated into musculoskeletal models

of arms and legs [24–26,27��]. Similarly, the Golgi tendon

organs models by Houk and Simon [23] and Rosenthal

et al. [28] have been used in models of the stretch reflex

[18,29]. A drawback of phenomenological models derived

from ramp-and-hold or sinusoidal stimuli is that they

might perform well for only a narrow subset of stimuli

[20,30]. This overfitting is particularly problematic when

proprioceptor activity is context-dependent, such as in

muscle spindles. Measuring the responses of propriocep-

tors to more complex stimuli (e.g. white noise or natural-

istic limb trajectories) and incorporating nonlinearities are

both likely to produce more generalizable models of

spiking responses to sensory stimuli [31,32].

Unlike abstract phenomenological models, structural

models derive firing patterns of proprioceptors by approx-

imating their anatomical structure [33,34��,35–39]. For

example, structural models of muscle spindles simulate

intrafusal muscle fibers and their interaction with the

extrafusal muscle and tendon. In a recent muscle spindle

model by Blum et al. [33,34��], the forces of intrafusal
Current Opinion in Physiology 2021, 22:100426
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muscle fibers are calculated based on measurements of

cross-bridge kinetics. Importantly, this knowledge of

mechanics allows the model to predict varied and com-

plex spindle firing patterns, including history-dependent

features. Structural models are more computationally

demanding and make more assumptions about parame-

ters than phenomenological models, but they tend to

generalize better across conditions because firing patterns

are emergent rather than built-in. Thus, structural models

can be particularly effective for proprioceptors with non-

linear tuning, such as muscle spindles.

Behavioral functions of proprioceptive
feedback
Proprioceptive information is involved in nearly all

aspects of motor control, from rapid recovery after a

stumble to searching for a light switch with your toes

in a dark room while your hands are bound tightly behind

your back. When trying to investigate the role of proprio-

ceptive feedback in a specific motor task, it is important to

consider the impact of perturbing proprioceptive sensors

at different levels of the sensorimotor hierarchy. Below,

we delineate the multiple levels of motor function for

which proprioceptive feedback plays an essential role.

Although we discuss posture and movement separately,

we note that they are ultimately integrated behaviors that

are not necessarily controlled independently [40].

Reflexive control of body posture

Proprioceptors from the limbs project to the spinal cord

(in vertebrates) and the ventral nerve cord (in inverte-

brates), where they provide excitatory synaptic input to

populations of projection neurons, local interneurons, and

motor neurons (Figure 2, left). The architecture of these

circuits has been extensively studied [41,42], although

only recently have genetic tools begun to reveal the

connectivity of identified cell types [9�,43].

Behaviors mediated by direct (monosynaptic) or nearly

direct feedback from proprioceptors are typically charac-

terized as ‘reflexive’ because they occur with a shorter

latency than voluntary movements [44]. In their simplest

form, proprioceptive reflexes rapidly (<50 ms) stabilize

body posture against external perturbations. For example,

when a physician taps the tendon near your knee cap,

muscle spindles elicit a compensatory reaction by acti-

vating the quadriceps and inhibiting the antagonistic

hamstring. Similarly, when a grasshopper’s tibia is flexed,

proprioceptive feedback from the femoral chordotonal

organ activates the extensor muscle and inhibits the flexor

muscle.

Such stabilization reflexes can be modeled as negative

feedback controllers, which produce corrective motor

output to minimize the error between the sensed posture

and a reference posture. These controllers may act locally

to stabilize individual joints, or they may act across joints
Current Opinion in Physiology 2021, 22:100426 
to produce a coordinated response that stabilizes a task-

level variable, such as the position of the hand while

grasping an object [45] or the position of the body’s center

of mass while standing [46].

A key parameter to achieve stability in negative feedback

controllers is the ratio of motor output to sensory input,

known as feedback gain. Tuning feedback gains can be

accomplished in modeling studies by identifying the

range of parameters in which the model is stable or by

fitting model predictions to experimental data. In rare

cases, gains have also been measured experimentally. In

one such experiment, Weiland et al. [47] measured the

gain of the feedback loop that controls the posture of the

stick insect femur–tibia joint. This experiment was only

possible because the anatomy of the stretch receptor

(femoral chordotonal organ) allowed its mechanical stim-

ulation without affecting the surrounding muscles.

Today, optogenetic stimulation may enable equivalent

analyses of reflex loops that cannot be manipulated

mechanically.

In addition to their established function in basic postural

control, elementary reflex loops also participate in more

complex behaviors that involve multiple joints or limbs

[44]. Understanding the context-dependent role and tun-

ing of reflexes remains an important direction for future

research, and computational models will likely be useful

in exploring the underlying circuits and algorithms

[48,49��].

Feedback control of locomotion

Walking and other forms of locomotion are characterized

by rhythmic movements of the body and limbs. The

rhythmic pattern of these movements can, in some cases,

be generated without feedback by intrinsically rhythmic

circuits in the spinal cord and ventral nerve cord, referred

to as central pattern generators (CPGs) [50,51]. However,

proprioceptive feedback has long been known to regulate

phase transitions, stabilize ongoing movements, and

adjust locomotion to changes in the environment [52,53].

Several recent models of locomotion control combine

feedforward motor commands from CPGs with proprio-

ceptive feedback. Such models have been useful in

testing the contribution of each control pathway in pro-

ducing coordinated movements. For example, in a CPG

model of cat walking, Markin et al. [26] found that the

integration of feedback from muscle spindles and Golgi

tendon organs is critical for providing body weight sup-

port and coordinating the legs’ transitions between stance

and swing phases. Proctor and Holmes [54] modeled

cockroach running and found that the integration of

feedback from leg joints (roughly corresponding to load

feedback from campaniform sensilla) with a CPG model

helps recover the heading direction after a lateral pertur-

bation. Similarly, feedback from body stretch receptors
www.sciencedirect.com
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Anatomical and computational view of proprioceptive feedback in motor control. Left: Proprioceptors from the limbs project to the spinal cord (in

vertebrates) and the ventral nerve cord (VNC, in invertebrates), where they transmit sensory signals to distributed circuits for posture and

movement control. Right: Proprioceptive signals affect motor control on different timescales through multiple nested feedback loops.

Proprioceptive signals are integrated in low-level and high-level controllers for posture, movement, and planning. They may also be used to

estimate the state of the body. Note that each box represents a computation, not necessarily an anatomically confined circuit. Computations

higher up in the hierarchy are more abstract and operate at longer timescales.
effectively tunes rhythmic CPG patterns for swimming

and crawling [55�,56]. In fact, locomotion can be success-

fully modeled without CPGs [57��,58–60], emphasizing

the functional importance of integrating proprioceptive

feedback in low-level motor circuits. In high-level motor

circuits, proprioceptive information may be used for

planning movement on a longer timescale. For instance,

during walking, a high-level controller may use proprio-

ceptive feedback to plan desired foot placements, which

then serve as target inputs to a low-level controller

[57��,59].

The use of proprioceptive feedback to drive or fine-tune

motor control of locomotion is ultimately constrained by

neural conduction delays and muscle kinetics. During fast

running, for example, proprioceptive feedback might not

be fast enough to modulate muscle activity on a step-by-

step basis [61]. In such situations, stable locomotion can

arise from interactions between feedforward control and

passive body mechanics [62,63]. Using direct experimen-

tal perturbations of proprioceptive neurons has the poten-

tial to disambiguate the relative contributions of feedfor-

ward and feedback signals in locomotion control, but

interpreting these experiments may require careful

modeling of inputs and outputs at multiple scales.

Feedback control of skilled limb movements

The control of non-rhythmic movements, such as putting

on a sock or dodging a projectile, also critically depends

on proprioceptive feedback. A particularly useful
www.sciencedirect.com 
framework for modeling such goal-directed movements

is optimal feedback control [64,65]. Optimal control

posits that the motor system attempts to minimize a

set of cost functions that describe the performance criteria

of a given task — for example, movement effort or accu-

racy. The role of proprioception in this framework is to

help generate and update an accurate estimate of the state

of the body, which in turn determines how the controller

initiates and refines movements. Unlike the simple neg-

ative feedback controllers discussed above, optimal feed-

back controllers correct for perturbations only to the

degree that they interfere with task success. For example,

when throwing a ball to a target, an optimal feedback

controller minimizes the variability of hand trajectories

only around the time of release while allowing variability

at other times [64].

Although optimal feedback control can predict many

common features of goal-directed movement, it remains

unclear how this strategy may be implemented in the

nervous system. It is typically assumed that feedback

control of skilled movements is mediated by higher-order

regions, such as cortex in vertebrates, but recent experi-

ments suggest that even fast spinal reflexes can produce

sophisticated control reminiscent of optimal feedback

[45,66]. In humans and other primates, there is a strong

tradition of combining mechanical perturbations with

computational models to understand the sensory inputs

and algorithms that underlie feedback control of reaching

[67,68]. Recent studies of primate motor cortex have
Current Opinion in Physiology 2021, 22:100426
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revealed that neural activity during skilled movements

exhibits rotational dynamics that lie on a low-dimensional

manifold [69]. The role of proprioceptive signals in con-

structing these representations is currently unclear,

although a recent modeling study showed that recurrent

neural network models trained to control a limb exhibited

similar rotational dynamics [70]. These activity patterns

have also been modeled using an implementation of a

feedback controller in a spiking neural network [71].

Going forward, these modeling frameworks may also help

understand the results of genetic perturbations to neural

circuits that underlie skilled motor behavior. As optimal

feedback control models generally have few parameters,

they may prove particularly useful for providing experi-

mental predictions of behavior when combined with

models of proprioceptors.

Body state estimation

Natural proprioceptive signals are noisy and subject to

conduction delays, creating problems for continuous

feedback control. To quantify and manage the uncer-

tainty introduced by noise and delays, the central nervous

system may implement a form of state estimation

(Figure 2, right), where sensory feedback is combined

with a prediction of the body’s state from an internal

model — a neural representation of the system that is

being controlled [72]. This comparison of sensory feed-

back against an internal prediction can compensate for

sensory delays and make control more robust to sensory

noise. Robustness to noise makes state estimation a

useful strategy for controlling motor tasks, including

posture [73], reaching [74], and locomotion [75]. For

example, in a dynamical simulation of posture control

during standing, both feedback and state-estimation con-

trollers were found to be stable against external perturba-

tions without noise, but in the presence of proprioceptive

noise, only state-estimation-based control was stable [73].

It is typically assumed that state estimation occurs in

higher-level circuits, such as the cerebellum and parietal

cortex in vertebrates [72], or the mushroom bodies in

insects [76]. But an intriguing idea is that locomotor CPGs

perform computations equivalent to state estimation and

can thus be understood as observers of feedback control

rather than just generators of limb motion [77�]. This idea

suggests that a form of state estimation may occur at

multiple timescales and levels of the sensorimotor hier-

archy (Figure 2, right). Indeed, signals from different

proprioceptor subtypes can converge as early as in sec-

ond-order neurons [9�,42,78,79]. However, little is known

about how circuits at different levels represent the body

and to what degree they combine signals from the diverse

proprioceptor subtypes. Going forward, one useful role of

computational models could be to predict the proprio-

ceptive information available during natural movement,

for example by combining models of proprioceptors with

realistic models of the muscles and limbs [27��].
Current Opinion in Physiology 2021, 22:100426 
State estimates enabled by proprioceptive feedback are

also used beyond the motor system. Recent work in the

Drosophila central complex has revealed circuits that

encode the body in both self-centered and world-cen-

tered coordinates [80–82]. Neural encoding of several key

quantities that guide spatial navigation during walking,

including heading in allocentric coordinates and velocity

in egocentric coordinates, persist in darkness [83], which

suggests that they rely on proprioceptive signals from the

legs. However, it remains unknown precisely which pro-

prioceptive signals are used to compute these signals.

Computational models that predict the proprioceptive

information available during fly walking by simulating

both proprioceptors and the mechanics of the limbs could

help explore which signals are suited to extract key

quantities like heading and velocity.

Approaches for systems-level modeling of
proprioception
We propose that developing multiscale computational

models that span proprioceptive sensing and motor con-

trol will make it easier to understand how neural circuits

flexibly control the body. Below, we outline several

possible approaches, including developing tractable mod-

els that grapple with proprioceptor diversity, integrating

across levels of the sensorimotor hierarchy, and account-

ing for the roles of sensory delay, noise, and contextual

modulation of proprioceptive signals.

Diversity of proprioceptive sensors and their models

A major challenge in modeling proprioceptors is the

diversity of sensory neuron subtypes. Unlike sensory

systems that are concentrated into specialized organs

(e.g. the eye, nose, and ear), proprioceptors are distrib-

uted throughout the body. Furthermore, the receptive

field of each proprioceptor is idiosyncratic to the tissue in

which it is embedded and how that tissue moves through

and interacts with the environment. Therefore, a model

that describes the input-output function of a muscle

spindle in a leg muscle may have little in common with

a muscle spindle in a jaw muscle. Existing models may be

tuned to match the properties of different proprioceptors

(e.g. [84]), but in most cases, additional physiological data

is needed. In addition, there remain many proprioceptors

for which models do not currently exist. Historically,

there has been a strong focus on modeling the activity

of mammalian muscle spindles and Golgi tendon organs

[18–21,33,34��,35–39]. In contrast, computational models

of invertebrate proprioceptors are only beginning to

emerge (e.g. [22,85�]), despite the growing literature

characterizing encoding properties of chordotonal organs,

campaniform sensilla, slit sensilla, and other propriocep-

tors [86–88]. Models of insect proprioceptors would be

particularly useful to complement the available genetic

tools to experimentally manipulate specific propriocep-

tive neurons during behavior [86].
www.sciencedirect.com
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Even where precise proprioceptor models are available,

many recent neuromechanical simulations rely on

simplified phenomenological proprioceptor models

[24,26,27��,84,89,90]. Whether such simplifications are

appropriate may depend on the level of system being

modeled, and further experimental and computational

analyses are needed to identify constraints on useful

approximations. One attractive possibility is that a trans-

formation of coordinates in the input and output variables

may help simplify proprioceptor models, as in the case of

using force instead of fiber length to model muscle

spindle responses [34��] or transforming signals between

eye, head, or body reference frames to model propriocep-

tive encoding in the cerebellar nuclei [91]. More gener-

ally, a powerful modeling framework would capture

diverse proprioceptors with a tractable number of tunable

parameters, such as location on body, hysteresis, and

maximum firing rate. Of course, simulation parameters

and code should be openly shared to facilitate reproduc-

ibility and reuse.

Integration of models for proprioception and motor

control

A major challenge in understanding the behavioral func-

tions of proprioceptive feedback is the lack of experimen-

tal separability between proprioceptive and motor circuits

across the sensorimotor hierarchy. An integration of mod-

els across levels can provide unique insights into the

control of posture, movement, and state estimation that

only emerge when considering these systems as a whole.

To study how specific proprioceptive signals contribute to

posture control, Prochazka et al. [48] integrated models of

muscle spindles and Golgi tendon organs into a feedback-

controlled stimulation of arm and leg muscles. The

authors found that positive force feedback from Golgi

tendon organs, which is generally considered unstable,

can actually stabilize a muscle’s response to increased

load if one also incorporates sensory delays and natural

filtering properties of mammalian muscle. The conclu-

sion that positive force feedback is a stable means to

control load-bearing motor tasks would not have been

clear in studying the controller or proprioceptors alone.

Several recent neuromechanical models of movement

control have also simulated the dynamic activity of pro-

prioceptors [24,26,89,90,92]. For example, Goldsmith

et al. [89] integrated models of proprioceptors into a

simulation and robotic model of a walking fruit fly. Using

feedback signals inspired by the tuning properties of

insect femoral chordotonal neurons and campaniform

sensilla enabled the robot to adapt to continuous changes

in load. These models could eventually be used to study

the effects of conduction delays, noise, and modulation of

specific proprioceptive signals on locomotion and skilled

limb movements, and to generate testable predictions for

perturbation experiments. We hope that emerging
www.sciencedirect.com 
methods for neuromechanical modeling will make these

models easier to construct and use [93–95].

Systems-level models can also provide insights into how

proprioceptive circuits represent the body and suggest

potential roles for feedback in motor control. For exam-

ple, Hamlet et al. [55�] used a multiscale model of lamprey

swimming to investigate how different proprioceptive

signals, encoding the direction and magnitude of body

curvature, may exert different effects on locomotor speed

and energy consumption. In another example, Sandbrink

et al. [27��] recently showed that some proprioceptive

representations naturally arise in a deep neural network

trained to recognize characters from arm motions given a

biologically realistic model of a human arm. Finally, Ache

and Dürr [85�] modeled the proprioceptive hairs of an

insect antenna to predict how downstream neurons

encode antennal movements. These studies illustrate

how systems-level models provide a useful framework

to investigate the role of proprioceptive feedback in

guiding natural movements.

Context-dependent modulation

An important characteristic of proprioception is that its

effects on motor control are not fixed, but can be tuned by

the nervous system under different behavioral contexts.

Modeling experimental results with such context-depen-

dent changes requires information about interactions

across multiple levels, further motivating systems-level

models.

A clear example of such a top-down modulation is the case

of reflex reversal, in which a reflex changes sign depend-

ing on the behavioral state of the animal. For instance,

stimulating neurons in the femoral chordotonal organ in

the stick insect leads to either extension or flexion of the

tibia depending on whether the leg is in stance or swing

[96]. Although there have been detailed studies of the

circuits that mediate reflex reversal [97], this phenome-

non is not commonly built into models for sensorimotor

control. One notable exception is the recent model by

Goldsmith et al. [49��], which investigated different per-

turbations in a neuromechanical model and found that

reflex reversal may be due to inhibition of the flexion-

tuned position-sensitive and velocity-sensitive neurons.

In another example, Bacqué-Cazenave et al. [98] built a

neuromechanical model of the crayfish leg circuitry which

was able to reproduce state-dependent reflex reversal

observed during locomotion [99].

Reflex modulation may also play an important role in

steering, possibly via descending input which modulates

sensory feedback depending on the steering direction.

For example, Schilling and Cruse [57��] proposed a fully

decentralized model of walking control that produces

curved walking by adjusting the setpoint of local control

loops in each leg. Ultimately, we expect that most
Current Opinion in Physiology 2021, 22:100426
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behaviors will involve not only a unique set of descending

motor commands, but also bespoke tuning of propriocep-

tive feedback pathways.

Conclusion

Due to advances in genetic targeting of neuronal cell-

types, our ability to perform targeted perturbations in

proprioceptive and motor circuits is rapidly expanding. As

the space of possible experiments grows, there is a

pressing need for computational frameworks to help

guide experimental design and interpretation. Models

developed for proprioceptors and motor control at differ-

ent scales can be integrated to yield new insights about

how proprioception interacts with motor control to sup-

port dexterous and flexible movements. These biological

principles may also inspire the design of novel robotic

systems and contribute to our understanding and treat-

ment of movement disorders.
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